
CSIT REPORT
Release rls19082

May 20, 2020

CONTENTS

1 Introduction 11.1 Report History . 11.2 Report Structure . 11.3 Test Scenarios . 31.4 Physical Testbeds . 31.5 Test Methodology . 13
2 VPP Performance 372.1 Overview . 372.2 Release Notes . 442.3 Packet Throughput . 462.4 Comparisons . 1212.5 Throughput Trending . 1232.6 Test Environment . 1242.7 Documentation . 162
3 VPP Device 1683.1 Overview . 1683.2 Release Notes . 1723.3 Integration Tests . 1723.4 Documentation . 181
4 CSIT Framework 1824.1 Design . 1824.2 Test Naming . 1854.3 Presentation and Analytics . 1874.4 CSIT RF Tags Descriptions . 215
Bibliography 230

i

CHAPTER

ONE

INTRODUCTION

1.1 Report History

FD.io CSIT-1908.2 Report history and per .[ww] revision changes are listed below.
.[ww] Revision Changes.21 Improved headers and legend in comparison tables..20 Initial version

FD.io CSIT Reports followCSIT-[yy][mm].[ww] numbering format, with version denoted by concatenationof two digit year [yy] and two digit month [mm], and maintenance revision identified by two digit calendarweek number [ww].

1.2 Report Structure

FD.io CSIT-1908.2 report contains system performance and functional testing data of VPP-19.08.2 re-lease. PDF version of this report1 is available for download.
CSIT-1908.2 report is structured as follows:

1. INTRODUCTION: General introduction to FD.io CSIT-1908.2.
• Introduction: This section.
• Test Scenarios Overview: A brief overview of test scenarios covered in this report.
• Physical Testbeds: Description of physical testbeds.
• Test Methodology: Performance benchmarking and functional test methodologies.

2. VPP PERFORMANCE: VPP performance tests executed in physical FD.io testbeds.
• Overview: Tested logical topologies, test coverage and naming specifics.
• Release Notes: Changes in CSIT-1908.2, added tests, environment or methodology changes,known issues.
• Packet Throughput: NDR, PDR throughput graphs based on results from repeated same testjob executions to verify repeatibility of measurements.
• SpeedupMulti-Core: NDR, PDR throughput multi-core speedup graphs based on results fromtest job executions.
• Packet Latency: Latency graphs based on results from test job executions.
• Soak Tests: Long duration soak tests are executed using PLRsearch algorithm.

1 https://docs.fd.io/csit/rls1908_2/report/_static/archive/csit_rls1908_2.21.pdf

1

https://docs.fd.io/csit/rls1908_2/report/_static/archive/csit_rls1908_2.21.pdf

CSIT REPORT, Release rls19082

• NFV Service Density: Network Function Virtualization (NFV) service density tests focus onmeasuring total per server throughput at varied NFV service “packing” densities with vswitchproviding host dataplane.
• Comparisons: Performance comparisons betweenVPP releases and between different testbedtypes.
• Throughput Trending: References to continuous VPP performance trending.
• Test Environment: Performance test environment configuration.
• Documentation: Pointers to CSIT source code documentation for VPP performance tests.

3. DPDK PERFORMANCE: DPDK performance tests executed in physical FD.io testbeds.
• Overview: Tested logical topologies, test coverage.
• Release Notes: Changes in CSIT-1908.2, known issues.
• Packet Throughput: NDR, PDR throughput graphs based on results from repeated same testjob executions to verify repeatibility of measurements.
• Packet Latency: Latency graphs based on results from test job executions.
• Comparisons: Performance comparisons between DPDK releases and between differenttestbed types.
• Throughput Trending: References to regular DPDK performance trending.
• Test Environment: Performance test environment configuration.
• Documentation: Pointers to CSIT source code documentation for DPDK performance tests.

4. VPP DEVICE: VPP functional tests executed in physical FD.io testbeds using containers.
• Overview: Tested virtual topologies, test coverage and naming specifics;
• Release Notes: Changes in CSIT-1908.2, added tests, environment or methodology changes,known issues.
• Integration Tests: Functional test environment configuration.
• Documentation: Pointers to CSIT source code documentation for VPP functional tests.

5. DETAILED RESULTS: Detailed result tables auto-generated from CSIT test job executions using RF(Robot Framework) output files as sources.
• VPP Performance NDR/PDR: VPP NDR/PDR throughput and latency.
• VPP Performance MRR: VPP MRR throughput.
• DPDK Performance: DPDK Testpmd and L3fwd NDR/PDR throughput and latency.

6. TEST CONFIGURATION: VPP DUT configuration data based on VPP API Test (VAT) CommandsHistory auto-generated from CSIT test job executions using RF output files as sources.
• VPP Performance NDR/PDR: Configuration data.
• VPP Performance MRR: Configuration data.

7. TEST OPERATIONAL DATA: VPP DUT operational data auto-generated from CSIT test job execu-tions using RFoutput files as sources.
• VPP Performance NDR/PDR: VPP show run outputs under test load.

8. CSIT FRAMEWORK DOCUMENTATION: Description of the overall FD.io CSIT framework.
• Design: Framework modular design hierarchy.
• Test naming: Test naming convention.
• Presentation and Analytics Layer: Description of PAL CSIT analytics module.

2 Chapter 1. Introduction

CSIT REPORT, Release rls19082

• CSIT RF Tags Descriptions: CSIT RF Tags used for test suite and test case grouping and selec-tion.

1.3 Test Scenarios

FD.io CSIT-1908.2 report includes multiple test scenarios of VPP centric applications, topologies and usecases. In addition it also covers baseline tests of DPDK sample applications. Tests are executed in physical(performance tests) and virtual environments (functional tests).
Brief overview of test scenarios covered in this report:

1. VPP Performance: VPP performance tests are executed in physical FD.io testbeds, focusing onVPP network data plane performance in NIC-to-NIC switching topologies. Tested across Intel XeonHaswell and Skylake servers, ARM, Denverton, range of NICs (10GE, 25GE, 40GE) and multi-thread/multi-core configurations. VPP application runs in bare-metal host user-mode handlingNICs. TRex is used as a traffic generator.
2. VPP Vhostuser Performance with KVM VMs: VPP VM service switching performance tests usingvhostuser virtual interface for interconnecting multiple NF-in-VM instances. VPP vswitch instanceruns in bare-metal user-mode handling NICs and connecting over vhost-user interfaces to VM in-stances each running VPP with virtio virtual interfaces. Similarly to VPP Performance, tests are runacross a range of configurations. TRex is used as a traffic generator.
3. VPP Memif Performance with LXC and Docker Containers: VPP Container service switching per-formance tests using memif virtual interface for interconnecting multiple VPP-in-container in-stances. VPP vswitch instance runs in bare-metal user-mode handling NICs and connecting overmemif (Slave side) interfaces to more instances of VPP running in LXC or in Docker Containers, bothwith memif interfaces (Master side). Similarly to VPP Performance, tests are run across a range ofconfigurations. TRex is used as a traffic generator.
4. DPDKPerformance: VPP uses DPDK to drive the NICs and physical interfaces. DPDK performancetests are used as a baseline to profile performance of theDPDK sub-system. TwoDPDKapplicationsare tested: Testpmd and L3fwd. DPDK tests are executed in the same testing environment as VPPtests. DPDK Testpmd and L3fwd applications run in host user-mode. TRex is used as a trafficgenerator.
5. VPPFunctional: VPP functional tests are executed in virtual FD.io testbeds, focusing on VPP packetprocessing functionality, including both network data plane and in-line control plane. Tests covervNIC-to-vNIC vNIC-to-nestedVM-to-vNIC forwarding topologies. Scapy is used as a traffic gener-ator.

All CSIT test data included in this report is auto- generated from RF (Robot Framework) output.xml filesproduced by LF (Linux Foundation) FD.io Jenkins jobs executed against VPP-19.08.2 release artifacts.References are provided to the original FD.io Jenkins job results and all archived source files.
FD.io CSIT system is developed using two main coding platforms: RF and Python2.7. CSIT-1908.2source code for the executed test suites is available in CSIT branch rls1908_2 in the directory ./tests/
<name_of_the_test_suite>. A local copy of CSIT source code can be obtained by cloning CSIT git repos-itory - git clone https://gerrit.fd.io/r/csit.

1.4 Physical Testbeds

All FD.io (Fast Data Input/Ouput) CSIT (Continuous System Integration and Testing) performance testresults included in this report are executed on the physical testbeds hosted by LF FD.io project, unlessotherwise noted.
Two physical server topology types are used:

1.3. Test Scenarios 3

CSIT REPORT, Release rls19082

• 2-Node Topology: Consists of one server acting as a SystemUnder Test (SUT) and one server actingas a Traffic Generator (TG), with both servers connected into a ring topology. Used for executingtests that require frame encapsulations supported by TG.
• 3-Node Topology: Consists of two servers acting as a Systems Under Test (SUTs) and one serveracting as a TrafficGenerator (TG), with all servers connected into a ring topology. Used for executingtests that require frame encapsulations not supported by TG e.g. certain overlay tunnel encapsu-lations and IPsec. Number of native Ethernet, IPv4 and IPv6 encapsulation tests are also executedon these testbeds, for comparison with 2-Node Topology.

Current FD.io production testbeds are built with SUT servers based on the following processor architec-tures:
• Intel Xeon: Skylake Platinum 8180, Haswell-SP E5-2699v3, Cascade Lake Platinum 8280, CascadeLake 6252N.
• Intel Atom: Denverton C3858.
• ARM: TaiShan 2280, hip07-d05.

Server SUT performance depends on server and processor type, hence results for testbeds based ondifferent servers must be reported separately, and compared if appropriate.
Complete technical specifications of compute servers used in CSIT physical testbeds are maintained inFD.io CSIT repository: https://git.fd.io/csit/tree/docs/lab/testbed_specifications.md.
Following is the description of existing production testbeds.

1.4.1 2-Node Xeon Cascade Lake (2n-clx)

Three 2n-clx testbeds are in operation in FD.io labs. Each 2n-clx testbed is built with two SuperMicroSYS-7049GP-TRT servers, SUTs are equipped with two Intel Xeon Gold 6252N processors (35.75 MBCache, 2.30 GHz, 24 cores). TGs are equiped with Intel Xeon Cascade Lake Platinum 8280 processors(38.5 MB Cache, 2.70 GHz, 28 cores). 2n-clx physical topology is shown below.

4 Chapter 1. Introduction

https://git.fd.io/csit/tree/docs/lab/testbed_specifications.md

CSIT REPORT, Release rls19082

NIC6

Socket 1
Intel Xeon

Pla�num 8280

NIC5NIC4

x16x16x16

Socket 0
Intel Xeon

Pla�num 8280

NIC3NIC2NIC1

x16x16x16

x86
Server

2-Node Xeon Cascade Lake (2n-clx)

Traffic Generator (TG)

DDR4

PCIe
Gen3

x86
Server

NIC1

Socket 0
Intel Xeon

Gold 6252N

NIC2 NIC3

x16 x16 x16

DDR4

Socket 1
Intel Xeon

Gold 6252N

NIC4 NIC5 NIC6

x16 x16 x16

System Under Test (SUT)

PCIe
Gen3

UPI

UPI

SUT servers are populated with the following NIC models:
1. NIC-1: x710-DA4 4p10GE Intel.
2. NIC-2: xxv710-DA2 2p25GE Intel.
3. NIC-3: cx556a-edat ConnectX5 2p100GE Mellanox. (Only testbed t27, t28)
4. NIC-4: empty, future expansion.
5. NIC-5: empty, future expansion.

1.4. Physical Testbeds 5

CSIT REPORT, Release rls19082

6. NIC-6: empty, future expansion.
TG servers run T-Rex application and are populated with the following NIC models:

1. NIC-1: x710-DA4 4p10GE Intel.
2. NIC-2: xxv710-DA2 2p25GE Intel.
3. NIC-3: cx556a-edat ConnectX5 2p100GE Mellanox. (Only testbed t27, t28)
4. NIC-4: empty, future expansion.
5. NIC-5: empty, future expansion.
6. NIC-6: x710-DA4 4p10GE Intel. (For self-tests.)

All Intel Xeon Cascade Lake servers run with Intel Hyper-Threading enabled, doubling the number oflogical cores exposed to Linux.

1.4.2 2-Node Xeon Skylake (2n-skx)

Four 2n-skx testbeds are in operation in FD.io labs. Each 2n-skx testbed is built with two SuperMicroSYS-7049GP-TRT servers, each in turn equipped with two Intel Xeon Skylake Platinum 8180 processors(38.5 MB Cache, 2.50 GHz, 28 cores). 2n-skx physical topology is shown below.

6 Chapter 1. Introduction

CSIT REPORT, Release rls19082

NIC6

Socket 1
Intel Xeon

Pla�num 8180

NIC5NIC4

x16x16x16

Socket 0
Intel Xeon

Pla�num 8180

NIC3NIC2NIC1

x16x16x16

x86
Server

2-Node Xeon Skylake (2n-skx)

Traffic Generator (TG)

DDR4

PCIe
Gen3

x86
Server

NIC1

Socket 0
Intel Xeon

Pla�num 8180

NIC2 NIC3

x16 x16 x16

DDR4

Socket 1
Intel Xeon

Pla�num 8180

NIC4 NIC5 NIC6

x16 x16 x16

System Under Test (SUT)

PCIe
Gen3

UPI

UPI

SUT servers are populated with the following NIC models:
1. NIC-1: x710-DA4 4p10GE Intel.
2. NIC-2: xxv710-DA2 2p25GE Intel.
3. NIC-3: cx556a-edat ConnectX5 2p100GE Mellanox. (Not used yet.)
4. NIC-4: empty, future expansion.
5. NIC-5: empty, future expansion.

1.4. Physical Testbeds 7

CSIT REPORT, Release rls19082

6. NIC-6: empty, future expansion.
TG servers run T-Rex application and are populated with the following NIC models:

1. NIC-1: x710-DA4 4p10GE Intel.
2. NIC-2: xxv710-DA2 2p25GE Intel.
3. NIC-3: cx556a-edat ConnectX5 2p100GE Mellanox. (Not used yet.)
4. NIC-4: empty, future expansion.
5. NIC-5: empty, future expansion.
6. NIC-6: x710-DA4 4p10GE Intel. (For self-tests.)

All Intel Xeon Skylake servers run with Intel Hyper-Threading enabled, doubling the number of logicalcores exposed to Linux, with 56 logical cores and 28 physical cores per processor socket.

1.4.3 3-Node Xeon Skylake (3n-skx)

Two 3n-skx testbeds are in operation in FD.io labs. Each 3n-skx testbed is built with three SuperMicroSYS-7049GP-TRT servers, each in turn equipped with two Intel Xeon Skylake Platinum 8180 processors(38.5 MB Cache, 2.50 GHz, 28 cores). 3n-skx physical topology is shown below.
3-Node Xeon Skylake (3n-skx)

NIC6

Socket 1
Intel Xeon

Pla�num 8180

NIC5NIC4

x16x16x16

Socket 0
Intel Xeon

Pla�num 8180

NIC3NIC2NIC1

x16x16x16

x86
Server

Traffic Generator (TG)

DDR4

PCIe
Gen3

UPI

x86
Server

NIC1

Socket 0
Intel Xeon

Pla�num 8180

NIC2 NIC3

x16 x16 x16

DDR4

Socket 1
Intel Xeon

Pla�num 8180

NIC4 NIC5 NIC6

x16 x16 x16

System Under Test 1 (SUT1)

PCIe
Gen3

UPI

x86
Server

NIC1

Socket 0
Intel Xeon

Pla�num 8180

NIC2 NIC3

x16 x16 x16

DDR4

Socket 1
Intel Xeon

Pla�num 8180

NIC4 NIC5 NIC6

x16 x16 x16

System Under Test 2 (SUT2)

PCIe
Gen3

UPI

SUT1 and SUT2 servers are populated with the following NIC models:
1. NIC-1: x710-DA4 4p10GE Intel.
2. NIC-2: xxv710-DA2 2p25GE Intel.
3. NIC-3: empty, future expansion.
4. NIC-4: empty, future expansion.

8 Chapter 1. Introduction

CSIT REPORT, Release rls19082

5. NIC-5: empty, future expansion.
6. NIC-6: empty, future expansion.

TG servers run T-Rex application and are populated with the following NIC models:
1. NIC-1: x710-DA4 4p10GE Intel.
2. NIC-2: xxv710-DA2 2p25GE Intel.
3. NIC-3: empty, future expansion.
4. NIC-4: empty, future expansion.
5. NIC-5: empty, future expansion.
6. NIC-6: x710-DA4 4p10GE Intel. (For self-tests.)

All Intel Xeon Skylake servers run with Intel Hyper-Threading enabled, doubling the number of logicalcores exposed to Linux, with 56 logical cores and 28 physical cores per processor socket.

1.4.4 3-Node Xeon Haswell (3n-hsw)

Three 3n-hsw testbeds are in operation in FD.io labs. Each 3n-hsw testbed is built with three Cisco UCS-c240m3 servers, each in turn equipped with two Intel Xeon Haswell-SP E5-2699v3 processors (45 MBCache, 2.3 GHz, 18 cores). 3n-hsw physical topology is shown below.
3-Node Xeon Haswell (3n-hsw)

NIC6

Socket 1
Intel Xeon
E5-2699v3

NIC5NIC4

x8x8x8

Socket 0
Intel Xeon
E5-2699v3

NIC3NIC2NIC1

x8x8x8

x86
Server

Traffic Generator (TG)

DDR4

PCIe
Gen3

QPI

x86
Server

NIC1

Socket 0
Intel Xeon
E5-2699v3

NIC2 NIC3

x8 x8 x8

DDR4

Socket 1
Intel Xeon
E5-2699v3

NIC4 NIC5 NIC6

x8 x8 x8

System Under Test 1 (SUT1)

PCIe
Gen3

QPI

x86
Server

NIC1

Socket 0
Intel Xeon
E5-2699v3

NIC2 NIC3

x8 x8 x8

DDR4

Socket 1
Intel Xeon
E5-2699v3

NIC4 NIC5 NIC6

x8 x8 x8

System Under Test 2 (SUT2)

PCIe
Gen3

QPI

SUT1 and SUT2 servers are populated with the following NIC models:
1. NIC-1: VIC 1385 2p40GE Cisco.
2. NIC-2: NIC x520 2p10GE Intel.
3. NIC-3: empty.

1.4. Physical Testbeds 9

CSIT REPORT, Release rls19082

4. NIC-4: NIC xl710-QDA2 2p40GE Intel.
5. NIC-5: NIC x710-DA2 2p10GE Intel.
6. NIC-6: QAT 8950 50G (Walnut Hill) Intel.

TG servers run T-Rex application and are populated with the following NIC models:
1. NIC-1: NIC xl710-QDA2 2p40GE Intel.
2. NIC-2: NIC x710-DA2 2p10GE Intel.
3. NIC-3: empty.
4. NIC-4: NIC xl710-QDA2 2p40GE Intel.
5. NIC-5: NIC x710-DA2 2p10GE Intel.
6. NIC-6: NIC x710-DA2 2p10GE Intel. (For self-tests.)

All Intel Xeon Haswell servers run with Intel Hyper-Threading disabled, making the number of logicalcores exposed to Linux match the number of 18 physical cores per processor socket.

1.4.5 2-Node Atom Denverton (2n-dnv)

2n-dnv testbed is built with: i) one Intel S2600WFT server acting as TG and equipped with two IntelXeon Skylake Platinum 8180 processors (38.5 MB Cache, 2.50 GHz, 28 cores), and ii) one SuperMicroSYS-E300-9A server acting as SUT and equipped with one Intel Atom C3858 processor (12 MB Cache,2.00 GHz, 12 cores). 2n-dnv physical topology is shown below.

10 Chapter 1. Introduction

CSIT REPORT, Release rls19082

Socket 1
Intel Xeon

Pla�num 8180

NIC4NIC3

x16x16

Socket 0
Intel Xeon

Pla�num 8180

NIC2NIC1

x16x16

x86
Server

2-Node Atom Denverton (2n-dnv)

Traffic Generator (TG)

DDR4

PCIe
Gen3

x86
Server

P1

Intel Atom CPU C3858 @2.00GHZ

P2

DDR4

P3 P4

System Under Test (SUT)

UPI

SUT server have four internal 10G NIC port:
1. P-1: x553 copper port.
2. P-2: x553 copper port.
3. P-3: x553 fiber port.
4. P-4: x553 fiber port.

TG server run T-Rex software traffic generator and are populated with the following NIC models:
1.4. Physical Testbeds 11

CSIT REPORT, Release rls19082

1. NIC-1: x550-T2 2p10GE Intel.
2. NIC-2: x550-T2 2p10GE Intel.
3. NIC-3: x520-DA2 2p10GE Intel.
4. NIC-4: x520-DA2 2p10GE Intel.

The 2n-dnv testbed is in operation in Intel SH labs.

1.4.6 3-Node Atom Denverton (3n-dnv)

One 3n-dnv testbed is built with: i) one SuperMicro SYS-7049GP-TRT server acting as TG and equippedwith two Intel Xeon Skylake Platinum 8180 processors (38.5 MB Cache, 2.50 GHz, 28 cores), and ii) oneSuperMicro SYS-E300-9A server acting as SUT and equipped with one Intel Atom C3858 processor (12MB Cache, 2.00 GHz, 12 cores). 3n-dnv physical topology is shown below.
3-Node Atom Denverton (3n-dnv)

Socket 1
Intel Xeon

Pla�num 8180

Socket 0
Intel Xeon

Pla�num 8180

NIC1

x16

x86
Server

Traffic Generator (TG)

DDR4

PCIe
Gen3

UPI

x86
Server

NIC1

Intel Atom C3858 @2.00GHz

x4

DDR4

NIC2

x4

System Under Test 1 (SUT1)

PCIe
Gen3

x86
Server

NIC1

Intel Atom C3858 @2.00GHz

x4

DDR4

NIC2

x4

System Under Test 2 (SUT2)

PCIe
Gen3

SUT1 and SUT2 servers are populated with the following NIC models:
1. NIC-1: x553 2p10GE fiber Intel.
2. NIC-2: x553 2p10GE copper Intel.

TG servers run T-Rex application and are populated with the following NIC models:
1. NIC-1: x710-DA4 4p10GE Intel.

1.4.7 3-Node ARM TaiShan (3n-tsh)

One 3n-tsh testbed is built with: i) one SuperMicro SYS-7049GP-TRT server acting as TG and equippedwith two Intel Xeon Skylake Platinum 8180 processors (38.5 MB Cache, 2.50 GHz, 28 cores), and ii)

12 Chapter 1. Introduction

CSIT REPORT, Release rls19082

one Huawei TaiShan 2280 server acting as SUT and equipped with one hip07-d05 processor (64* ARMCortex-A72). 3n-tsh physical topology is shown below.
3-Node ARM TaiShan (3n-tsh)

NIC2

Socket 1
Intel Xeon

Pla�num 8180

x16

Socket 0
Intel Xeon

Pla�num 8180

NIC1

x16

x86
Server

Traffic Generator (TG)

DDR4

PCIe
Gen3

UPI

ARM
Server

NIC1

hip07-d05
64* ARM Cortex-A72

x8

DDR4

NIC2

x8

System Under Test 1 (SUT1)

PCIe
Gen3

ARM
Server

NIC1

hip07-d05
64* ARM Cortex-A72

x8

DDR4

NIC2

x8

System Under Test 2 (SUT2)

PCIe
Gen3

SUT1 and SUT2 servers are populated with the following NIC models:
1. NIC-1: connectx4 2p25GE Mellanox.
2. NIC-2: x520 2p10GE Intel.

TG servers run T-Rex application and are populated with the following NIC models:
1. NIC-1: x710-DA4 4p10GE Intel.
2. NIC-2: xxv710-DA2 2p25GE Intel.

1.5 Test Methodology

1.5.1 Terminology

• Frame size: size of an Ethernet Layer-2 frame on the wire, including any VLAN tags (dot1q, dot1ad)and Ethernet FCS, but excluding Ethernet preamble and inter-frame gap. Measured in Bytes.
• Packet size: same as frame size, both terms used interchangeably.
• Inner L2 size: for tunneled L2 frames only, size of an encapsulated Ethernet Layer-2 frame, precededwith tunnel header, and followed by tunnel trailer. Measured in Bytes.
• Inner IP size: for tunneled IP packets only, size of an encapsulated IPv4 or IPv6 packet, precededwith tunnel header, and followed by tunnel trailer. Measured in Bytes.
• Device Under Test (DUT): In software networking, “device” denotes a specific piece of softwaretasked with packet processing. Such device is surrounded with other software components (such

1.5. Test Methodology 13

CSIT REPORT, Release rls19082

as operating system kernel). It is not possible to run devices without also running the other com-ponents, and hardware resources are shared between both. For purposes of testing, the whole setof hardware and software components is called “System Under Test” (SUT). As SUT is the part ofthe whole test setup performance of which can be measured with RFC 25442, using SUT instead of
RFC 25443 DUT. Device under test (DUT) can be re-introduced when analyzing test results usingwhitebox techniques, but this document sticks to blackbox testing.

• System Under Test (SUT): System under test (SUT) is a part of the whole test setup whose perfor-mance is to be benchmarked. The complete methodology contains other parts, whose performanceis either already established, or not affecting the benchmarking result.
• Bi-directional throughput tests: involve packets/frames flowing in both east-west and west-eastdirections over every tested interface of SUT/DUT. Packet flowmetrics are measured per direction,and can be reported as aggregate for both directions (i.e. throughput) and/or separately for eachmeasured direction (i.e. latency). In most cases bi-directional tests use the same (symmetric) loadin both directions.
• Uni-directional throughput tests: involve packets/frames flowing in only one direction, i.e. eithereast-west or west-east direction, over every tested interface of SUT/DUT. Packet flow metrics aremeasured and are reported for measured direction.
• Packet Loss Ratio (PLR): ratio of packets received relative to packets transmitted over the test trialduration, calculated using formula: PLR = (pkts_transmitted - pkts_received) / pkts_transmitted.For bi-directional throughput tests aggregate PLR is calculated based on the aggregate number ofpackets transmitted and received.
• Packet Throughput Rate: maximum packet offered load DUT/SUT forwards within the specifiedPacket Loss Ratio (PLR). In many cases the rate depends on the frame size processed by DUT/SUT.Hence packet throughput rate MUST be quoted with specific frame size as received by DUT/SUTduring the measurement. For bi-directional tests, packet throughput rate should be reported asaggregate for both directions. Measured in packets-per-second (pps) or frames-per-second (fps),equivalent metrics.
• Bandwidth Throughput Rate: a secondary metric calculated from packet throughput rate usingformula: bw_rate = pkt_rate * (frame_size + L1_overhead) * 8, where L1_overhead for Ethernetincludes preamble (8 Bytes) and inter-frame gap (12 Bytes). For bi-directional tests, bandwidththroughput rate should be reported as aggregate for both directions. Expressed in bits-per-second(bps).
• Non Drop Rate (NDR): maximum packet/bandwith throughput rate sustained by DUT/SUT at PLRequal zero (zero packet loss) specific to tested frame size(s). MUST be quoted with specific packetsize as received by DUT/SUT during the measurement. Packet NDR measured in packets-per-second (or fps), bandwidth NDR expressed in bits-per-second (bps).
• Partial Drop Rate (PDR): maximum packet/bandwith throughput rate sustained by DUT/SUT atPLR greater than zero (non-zero packet loss) specific to tested frame size(s). MUST be quoted withspecific packet size as received by DUT/SUT during the measurement. Packet PDR measured inpackets-per-second (or fps), bandwidth PDR expressed in bits-per-second (bps).
• Maximum Receive Rate (MRR): packet/bandwidth rate regardless of PLR sustained by DUT/SUTunder specified Maximum Transmit Rate (MTR) packet load offered by traffic generator. MUST bequoted with both specific packet size and MTR as received by DUT/SUT during the measurement.PacketMRRmeasured in packets-per-second (or fps), bandwidthMRR expressed in bits-per-second(bps).
• Trial: a single measurement step.
• Trial duration: amount of time over which packets are transmitted and received in a single mea-surement step.

2 https://tools.ietf.org/html/rfc2544.html3 https://tools.ietf.org/html/rfc2544.html

14 Chapter 1. Introduction

https://tools.ietf.org/html/rfc2544.html
https://tools.ietf.org/html/rfc2544.html

CSIT REPORT, Release rls19082

1.5.2 VPP Forwarding Modes

VPP is tested in a number of L2 and IP packet lookup and forwarding modes. Within each mode baselineand scale tests are executed, the latter with varying number of lookup entries.
L2 Ethernet Switching

VPP is tested in three L2 forwarding modes:
• l2patch: L2 patch, the fastest point-to-point L2 path that loops packets between two interfaceswithout any Ethernet frame checks or lookups.
• l2xc: L2 cross-connect, point-to-point L2 path with all Ethernet frame checks, but no MAC learningand no MAC lookup.
• l2bd: L2 bridge-domain, multipoint-to-multipoint L2 path with all Ethernet frame checks, withMAClearning (unless static MACs are used) and MAC lookup.

l2bd tests are executed in baseline and scale configurations:
• l2bdbase: low number of L2 flows (254 per direction) is switched by VPP. They drive the content ofMAC FIB size (508 totalMAC entries). Both source and destinationMAC addresses are incrementedon a packet by packet basis.
• l2bdscale: high number of L2 flows is switched by VPP. Tested MAC FIB sizes include: i) 10k (5kunique flows per direction), ii) 100k (2x 50k flows) and iii) 1M (2x 500k). Both source and destina-tion MAC addresses are incremented on a packet by packet basis, ensuring new entries are learnrefreshed and looked up at every packet, making it the worst case scenario.

Ethernet wire encapsulations tested include: untagged, dot1q, dot1ad.
IPv4 Routing

IPv4 routing tests are executed in baseline and scale configurations:
• ip4base: low number of IPv4 flows (253 or 254 per direction) is routed by VPP. They drive thecontent of IPv4 FIB size (506 or 508 total /32 prefixes). Destination IPv4 addresses are incrementedon a packet by packet basis.
• ip4scale: high number of IPv4 flows is routed by VPP. Tested IPv4 FIB sizes of /32 prefixes include:i) 20k (10k unique flows per direction), ii) 200k (2x 100k flows) and iii) 2M (2x 1M). Destination IPv4addresses are incremented on a packet by packet basis, ensuring new FIB entries are looked up atevery packet, making it the worst case scenario.

IPv6 Routing

IPv6 routing tests are executed in baseline and scale configurations:
• ip6base: low number of IPv6 flows (253 or 254 per direction) is routed by VPP. They drive the con-tent of IPv6 FIB size (506 or 508 total /128 prefixes). Destination IPv6 addresses are incrementedon a packet by packet basis.
• ip6scale: high number of IPv6 flows is routed by VPP. Tested IPv6 FIB sizes of /128 prefixes include:i) 20k (10k unique flows per direction), ii) 200k (2x 100k flows) and iii) 2M (2x 1M). Destination IPv6addresses are incremented on a packet by packet basis, ensuring new FIB entries are looked up atevery packet, making it the worst case scenario.

1.5. Test Methodology 15

CSIT REPORT, Release rls19082

SRv6 Routing

SRv6 routing tests are executed in a number of baseline configurations, in each case SR policy and steeringpolicy are configured for one direction and one (or two) SR behaviours (functions) in the other directions:
• srv6enc1sid: One SID (no SRH present), one SR function - End.
• srv6enc2sids: Two SIDs (SRH present), two SR functions - End and End.DX6.
• srv6enc2sids-nodecaps: Two SIDs (SRH present) without decapsulation, one SR function - End.
• srv6proxy-dyn: Dynamic SRv6 proxy, one SR function - End.AD.
• srv6proxy-masq: Masquerading SRv6 proxy, one SR function - End.AM.
• srv6proxy-stat: Static SRv6 proxy, one SR function - End.AS.

In all listed cases low number of IPv6 flows (253 per direction) is routed by VPP.

1.5.3 Tunnel Encapsulations

Tunnel encapsulations testing is grouped based on the type of outer header: IPv4 or IPv6.
IPv4 Tunnels

VPP is tested in the following IPv4 tunnel baseline configurations:
• ip4vxlan-l2bdbase: VXLAN over IPv4 tunnels with L2 bridge-domain MAC switching.
• ip4vxlan-l2xcbase: VXLAN over IPv4 tunnels with L2 cross-connect.
• ip4lispip4-ip4base: LISP over IPv4 tunnels with IPv4 routing.
• ip4lispip6-ip6base: LISP over IPv4 tunnels with IPv6 routing.

In all cases listed above low number of MAC, IPv4, IPv6 flows (253 or 254 per direction) is switched orrouted by VPP.
In addition selected IPv4 tunnels are tested at scale:

• dot1q–ip4vxlanscale-l2bd: VXLAN over IPv4 tunnels with L2 bridge- domain MAC switching, withscaled up dot1q VLANs (10, 100, 1k), mapped to scaled up L2 bridge-domains (10, 100, 1k), thatare in turn mapped to (10, 100, 1k) VXLAN tunnels. 64.5k flows are transmitted per direction.
IPv6 Tunnels

VPP is tested in the following IPv6 tunnel baseline configurations:
• ip6lispip4-ip4base: LISP over IPv4 tunnels with IPv4 routing.
• ip6lispip6-ip6base: LISP over IPv4 tunnels with IPv6 routing.

In all cases listed above low number of IPv4, IPv6 flows (253 or 254 per direction) is routed by VPP.

1.5.4 VPP Features

VPP is tested in a number of data plane feature configurations across different forwarding modes. Fol-lowing sections list features tested.

16 Chapter 1. Introduction

CSIT REPORT, Release rls19082

ACL Security-Groups

Both stateless and stateful access control lists (ACL), also known as security-groups, are supported byVPP.
Following ACL configurations are tested for MAC switching with L2 bridge-domains:

• l2bdbasemaclrn-iacl{E}sl-{F}flows: Input stateless ACL, with {E} entries and {F} flows.
• l2bdbasemaclrn-oacl{E}sl-{F}flows: Output stateless ACL, with {E} entries and {F} flows.
• l2bdbasemaclrn-iacl{E}sf-{F}flows: Input stateful ACL, with {E} entries and {F} flows.
• l2bdbasemaclrn-oacl{E}sf-{F}flows: Output stateful ACL, with {E} entries and {F} flows.

Following ACL configurations are tested with IPv4 routing:
• ip4base-iacl{E}sl-{F}flows: Input stateless ACL, with {E} entries and {F} flows.
• ip4base-oacl{E}sl-{F}flows: Output stateless ACL, with {E} entries and {F} flows.
• ip4base-iacl{E}sf-{F}flows: Input stateful ACL, with {E} entries and {F} flows.
• ip4base-oacl{E}sf-{F}flows: Output stateful ACL, with {E} entries and {F} flows.

ACL tests are executed with the following combinations of ACL entries and number of flows:
• ACL entry definitions

– flow non-matching deny entry: (src-ip4, dst-ip4, src-port, dst-port).
– flow matching permit ACL entry: (src-ip4, dst-ip4).

• {E} - number of non-matching deny ACL entries, {E} = [1, 10, 50].
• {F} - number of UDP flows with different tuple (src-ip4, dst-ip4, src-port, dst-port), {F} = [100, 10k,100k].
• All {E}x{F} combinations are tested per ACL type, total of 9.

ACL MAC-IP

MAC-IP binding ACLs are tested for MAC switching with L2 bridge-domains:
• l2bdbasemaclrn-macip-iacl{E}sl-{F}flows: Input stateless ACL, with {E} entries and {F} flows.

MAC-IP ACL tests are executed with the following combinations of ACL entries and number of flows:
• ACL entry definitions

– flow non-matching deny entry: (dst-ip4, dst-mac, bit-mask)
– flow matching permit ACL entry: (dst-ip4, dst-mac, bit-mask)

• {E} - number of non-matching deny ACL entries, {E} = [1, 10, 50]
• {F} - number of UDP flows with different tuple (dst-ip4, dst-mac), {F} = [100, 10k, 100k]
• All {E}x{F} combinations are tested per ACL type, total of 9.

NAT44

NAT44 is tested in baseline and scale configurations with IPv4 routing:
• ip4base-nat44: baseline test with single NAT entry (addr, port), single UDP flow.
• ip4base-udpsrcscale{U}-nat44: baseline test with {U} NAT entries (addr, {U}ports), {U}=15.
• ip4scale{R}-udpsrcscale{U}-nat44: scale tests with {R}*{U} NAT entries ({R}addr, {U}ports), {R}=[100,1k, 2k, 4k], {U}=15.

1.5. Test Methodology 17

CSIT REPORT, Release rls19082

1.5.5 Data Plane Throughput

Data Plane Throughput Tests

Network data plane throughput is measured using multiple test methods in order to obtain representativeand repeatable results across the large set of performance test cases implemented and executed withinCSIT.
Following throughput test methods are used:

• MLRsearch - Multiple Loss Ratio search
• MRR - Maximum Receive Rate
• PLRsearch - Probabilistic Loss Ratio search

Description of each test method is followed by generic test properties shared by all methods.
MLRsearch Tests

Description

Multiple Loss Ratio search (MLRsearch) tests discover multiple packet throughput rates in a single search,reducing the overall test execution time compared to a binary search. Each rate is associated with adistinct Packet Loss Ratio (PLR) criteria. In FD.io CSIT two throughput rates are discovered: Non-DropRate (NDR, with zero packet loss, PLR=0) and Partial Drop Rate (PDR, with PLR<0.5%). MLRsearch iscompliant with RFC 25444.
Usage

MLRsearch tests are run to discover NDR and PDR rates for each VPP and DPDK release covered byCSIT report. Results for small frame sizes (64b/78B, IMIX) are presented in packet throughput graphs(Box-and-Whisker Plots) with NDR and PDR rates plotted against the test cases covering popular VPPpacket paths.
Each test is executed at least 10 times to verify measurements repeatability and results are comparedbetween releases and test environments. NDR and PDR packet and bandwidth throughput results for allframe sizes and for all tests are presented in detailed results tables.
Details

See MLRsearch Tests (page 20) section for more detail. MLRsearch is being standardized in IETF in draft-vpolak-mkonstan-mlrsearch5.
MRR Tests

Description

Maximum Receive Rate (MRR) tests are complementary to MLRsearch tests, as they provide a maximum“raw” throughput benchmark for development and testing community.
MRR tests measure the packet forwarding rate under the maximum load offered by traffic generator(dependent on link type and NIC model) over a set trial duration, regardless of packet loss. Maximumload for specified Ethernet frame size is set to the bi-directional link rate.

4 https://tools.ietf.org/html/rfc2544.html5 https://tools.ietf.org/html/draft-vpolak-mkonstan-bmwg-mlrsearch

18 Chapter 1. Introduction

https://tools.ietf.org/html/rfc2544.html
https://tools.ietf.org/html/draft-vpolak-mkonstan-bmwg-mlrsearch
https://tools.ietf.org/html/draft-vpolak-mkonstan-bmwg-mlrsearch

CSIT REPORT, Release rls19082

Usage

MRR tests are much faster than MLRsearch as they rely on a single trial or a small set of trials with veryshort duration. It is this property that makes them suitable for continuous execution in daily performancetrending jobs enabling detection of performance anomalies (regressions, progressions) resulting from dataplane code changes.
MRR tests are also used for VPP per patch performance jobs verifying patch performance vs. parent. CSITreports includeMRR throughput comparisons between releases and test environments. Small frame sizesonly (64b/78B, IMIX).
Details

SeeMRR Throughput (page 20) section for more detail about MRR tests configuration.
FD.io CSIT performance dashboard includes complete description of daily performance trending tests6and VPP per patch tests7.
PLRsearch Tests

Description

Probabilistic Loss Ratio search (PLRsearch) tests discovers a packet throughput rate associated with con-figured Packet Loss Ratio (PLR) criteria for tests run over an extended period of time a.k.a. soak testing.PLRsearch assumes that system under test is probabilistic in nature, and not deterministic.
Usage

PLRsearch are run to discover a sustained throughput for PLR=10^-7 (close to NDR) for VPP releasecovered by CSIT report. Results for small frame sizes (64b/78B) are presented in packet throughputgraphs (Box Plots) for a small subset of baseline tests.
Each soak test lasts 30 minutes and is executed at least twice. Results are compared against NDR andPDR rates discovered with MLRsearch.
Details

See PLRsearch (page 21) methodology section for more detail. PLRsearch is being standardized in IETF indraft-vpolak-bmwg-plrsearch8.
Generic Test Properties

All data plane throughput test methodologies share following generic properties:
• Tested L2 frame sizes (untagged Ethernet):

– IPv4 payload: 64B, IMIX (28x64B, 16x570B, 4x1518B), 1518B, 9000B.
– IPv6 payload: 78B, IMIX (28x78B, 16x570B, 4x1518B), 1518B, 9000B.
– All quoted sizes include frame CRC, but exclude per frame transmission overhead of 20B(preamble, inter frame gap).

6 https://docs.fd.io/csit/master/trending/methodology/performance_tests.html7 https://docs.fd.io/csit/master/trending/methodology/perpatch_performance_tests.html8 https://tools.ietf.org/html/draft-vpolak-bmwg-plrsearch

1.5. Test Methodology 19

https://docs.fd.io/csit/master/trending/methodology/performance_tests.html
https://docs.fd.io/csit/master/trending/methodology/perpatch_performance_tests.html
https://tools.ietf.org/html/draft-vpolak-bmwg-plrsearch

CSIT REPORT, Release rls19082

• Offered packet load is always bi-directional and symmetric.
• All measured and reported packet and bandwidth rates are aggregate bi-directional rates reportedfrom external Traffic Generator perspective.

MLRsearch Tests

Overview

Multiple Loss Rate search (MLRsearch) tests use new search algorithm implemented in FD.io CSIT project.MLRsearch discovers multiple packet throughput rates in a single search, with each rate associated witha different Packet Loss Ratio (PLR) criteria.
Two throughput measurements used in FD.io CSIT are Non-Drop Rate (NDR, with zero packet loss,PLR=0) and Partial Drop Rate (PDR, with packet loss rate not greater than the configured non-zero PLR).
MLRsearch discovers NDR and PDR in a single pass reducing required time duration compared to separate
‘binary search‘_es for NDR and PDR. Overall search time is reduced even further by relying on shortertrial durations of intermediate steps, with only the final measurements conducted at the specified finaltrial duration. This results in the shorter overall execution time when compared to standard NDR/PDRbinary search, while guaranteeing similar results.
If needed, next version of MLRsearch can be easily adopted to discover more throughput rates withdifferent pre-defined PLRs.
Note: All throughput rates are always bi-directional aggregates of two equal (symmetric) uni-directionalpacket rates received and reported by an external traffic generator.

Search Implementation

Detailed description of the MLRsearch algorithm is included in the IETF draft draft-vpolak-mkonstan-mlrsearch9 that is in the process of being standardized in the IETF Benchmarking Methodology WorkingGroup (BMWG).
MLRsearch is also available as a PyPI (Python Package Index) library10.
Implementation Deviations

FD.io CSIT implementation of MLRsearch so far is fully based on the -02 version of the draft-vpolak-mkonstan-mlrsearch-0211.
MRR Throughput

Maximum Receive Rate (MRR) tests are complementary to MLRsearch tests, as they provide a maximum“raw” throughput benchmark for development and testing community. MRR tests measure the packetforwarding rate under the maximum load offered by traffic generator over a set trial duration, regardlessof packet loss.
MRR tests are currently used for following test jobs:

• Report performance comparison: 64B, IMIX for vhost, memif.
• Daily performance trending: 64B, IMIX for vhost, memif.

9 https://tools.ietf.org/html/draft-vpolak-mkonstan-bmwg-mlrsearch10 https://pypi.org/project/MLRsearch/11 https://tools.ietf.org/html/draft-vpolak-mkonstan-bmwg-mlrsearch-02

20 Chapter 1. Introduction

https://tools.ietf.org/html/draft-vpolak-mkonstan-bmwg-mlrsearch
https://tools.ietf.org/html/draft-vpolak-mkonstan-bmwg-mlrsearch
https://pypi.org/project/MLRsearch/
https://tools.ietf.org/html/draft-vpolak-mkonstan-bmwg-mlrsearch-02
https://tools.ietf.org/html/draft-vpolak-mkonstan-bmwg-mlrsearch-02

CSIT REPORT, Release rls19082

• Per-patch performance verification: 64B.
• Initial iterations of MLRsearch and PLRsearch: 64B.

Maximum offered load for specific L2 Ethernet frame size is set to either the maximum bi-directional linkrate or tested NIC model capacity, as follows:
• For 10GE NICs the maximum packet rate load is 2x14.88 Mpps for 64B, a 10GE bi-directional linkrate.
• For 25GE NICs the maximum packet rate load is 2x18.75 Mpps for 64B, a 25GE bi-directional linksub-rate limited by 25GE NIC used on TRex TG, XXV710.
• For 40GE NICs the maximum packet rate load is 2x18.75 Mpps for 64B, a 40GE bi-directional linksub-rate limited by 40GE NIC used on TRex TG,XL710. Packet rate for other tested frame sizes islimited by PCIeGen3 x8 bandwidth limitation of ~50Gbps.

MRR test code implements multiple bursts of offered packet load and has two configurable burst parame-ters: individual trial duration and number of trials in a single burst. This enables more precise performancetrending by providing more results data for analysis.
Burst parameter settings vary between different tests using MRR:

• MRR individual trial duration:
– Report performance comparison: 1 sec.
– Daily performance trending: 1 sec.
– Per-patch performance verification: 10 sec.
– Initial iteration for MLRsearch: 1 sec.
– Initial iteration for PLRsearch: 5.2 sec.

• Number of MRR trials per burst:
– Report performance comparison: 10.
– Daily performance trending: 10.
– Per-patch performance verification: 5.
– Initial iteration for MLRsearch: 1.
– Initial iteration for PLRsearch: 1.

PLRsearch

Motivation for PLRsearch

Network providers are interested in throughput a system can sustain.
RFC 254412 assumes loss ratio is given by a deterministic function of offered load. But NFV softwaresystems are not deterministic enough. This makes deterministic algorithms (such as binary search13 perRFC 2544 and MLRsearch with single trial) to return results, which when repeated show relatively highstandard deviation, thus making it harder to tell what “the throughput” actually is.
We need another algorithm, which takes this indeterminism into account.
Generic Algorithm

Detailed description of the PLRsearch algorithm is included in the IETF draft draft-vpolak-bmwg-plrsearch-0214 that is in the process of being standardized in the IETF BenchmarkingMethodologyWork-
12 https://tools.ietf.org/html/rfc254413 https://en.wikipedia.org/wiki/Binary_search_algorithm14 https://tools.ietf.org/html/draft-vpolak-bmwg-plrsearch-02

1.5. Test Methodology 21

https://tools.ietf.org/html/rfc2544
https://en.wikipedia.org/wiki/Binary_search_algorithm
https://tools.ietf.org/html/draft-vpolak-bmwg-plrsearch-02
https://tools.ietf.org/html/draft-vpolak-bmwg-plrsearch-02

CSIT REPORT, Release rls19082

ing Group (BMWG).
Terms

The rest of this page assumes the reader is familiar with the following terms defined in the IETF draft:
• Trial Order Independent System
• Duration Independent System
• Target Loss Ratio
• Critical Load
• Offered Load regions

– Zero Loss Region
– Non-Deterministic Region
– Guaranteed Loss Region

• Fitting Function
– Stretch Function
– Erf Function

• Bayesian Inference
– Prior distribution
– Posterior Distribution

• Numeric Integration
– Monte Carlo
– Importance Sampling

FD.io CSIT Implementation Specifics

The search receives min_rate and max_rate values, to avoid measurements at offered loads not sup-poreted by the traffic generator.
The implemented tests cases use bidirectional traffic. The algorithm stores each rate as bidirectionalrate (internally, the algorithm is agnostic to flows and directions, it only cares about aggregate counts ofpackets sent and packets lost), but debug output from traffic generator lists unidirectional values.
In a sample implemenation in FD.io CSIT project, there is roughly 0.5 second delay between trials due torestrictons imposed by packet traffic generator in use (T-Rex).
As measurements results come in, posterior distribution computation takes more time (per sample), al-though there is a considerable constant part (mostly for inverting the fitting functions).
Also, the integrator needs a fair amount of samples to reach the region the posterior distribution is con-centrated at.
And of course, the speed of the integrator depends on computing power of the CPU the algorithm is ableto use.
All those timing related effects are addressed by arithmetically increasing trial durations with configurablecoefficients (currently 5.1 seconds for the first trial, each subsequent trial being 0.1 second longer).
In order to avoid them, the current implementation tracks natural logarithm (instead of the original quan-tity) for any quantity which is never negative. Logarithm of zero is minus infinity (not supported byPython), so special value “None” is used instead. Specific functions for frequent operations (such as“logarithm of sum of exponentials”) are defined to handle None correctly.

22 Chapter 1. Introduction

CSIT REPORT, Release rls19082

Current implementation uses two fitting functions, called “stretch” and “erf”. In general, their estimatesfor critical rate differ, which adds a simple source of systematic error, on top of randomness error reportedby integrator. Otherwise the reported stdev of critical rate estimate is unrealistically low.
Both functions are not only increasing, but also convex (meaning the rate of increase is also increasing).
Both fitting functions have several mathematically equivalent formulas, each can lead to an arithmeticoverflowor underflow in different sub-terms. Overflows can be eliminated by using different exact formu-las for different argument ranges. Underflows can be avoided by using approximate formulas in affectedargument ranges, such ranges have their own formulas to compute. At the end, both fitting functionimplementations contain multiple “if” branches, discontinuities are a possibility at range boundaries.
The numeric integrator expects all the parameters to be distributed (independently and) uniformly on aninterval (-1, 1).
As both “mrr” and “spread” parameters are positive and not dimensionless, a transformation is needed.Dimentionality is inherited from max_rate value.
The “mrr” parameter follows a Lomax distribution15 with alpha equal to one, but shifted so that mrr isalways greater than 1 packet per second.
The “stretch” parameter is generated simply as the “mrr” value raised to a random power between zeroand one; thus it follows a reciprocal distribution16.
After few measurements, the posterior distribution of fitting function arguments gets quite concentratedinto a small area. The integrator is using Monte Carlo17 with importance sampling18 where the biaseddistribution is bivariate Gaussian19 distribution, with deliberately larger variance. If the generated samplefalls outside (-1, 1) interval, another sample is generated.
The center and the covariance matrix for the biased distribution is based on the first and secondmomentsof samples seen so far (within the computation). The center is used directly, covariance matrix is scaledup by a heurictic constant (8.0 by default). The following additional features are applied designed to avoidhyper-focused distributions.
Each computation starts with the biased distribution inherited from the previous computation (zero pointand unit covariance matrix is used in the first computation), but the overal weight of the data is set tothe weight of the first sample of the computation. Also, the center is set to the first sample point. Whenadditional samples come, their weight (including the importance correction) is compared to sum of theweights of data seen so far (within the iteration). If the new sample ismore than one e-foldmore impactful,both weight values (for data so far and for the new sample) are set to (geometric) average of the twoweights.
This combination showed the best behavior, as the integrator usually follows two phases. First phase(where inherited biased distribution or single big sample are dominating) is mainly important for locatingthe new area the posterior distribution is concentrated at. The second phase (dominated bywhole samplepopulation) is actually relevant for the critical rate estimation.
First two measurements are hardcoded to happen at the middle of rate interval and at max_rate. Nexttwomeasurements followMRR-like logic, offered load is decreased so that it would reach target loss ratioif offered load decrease lead to equal decrease of loss rate.
The rest of measurements start directly in between erf and stretch estimate average. There is oneworkaround implemented, aimed at reducing the number of consequent zero loss measurements (perfitting function). The workaround first stores every measurement result which loss ratio was the targedloss ratio or higher. Sorted list (called lossy loads) of such results is maintained.
When a sequence of one or more zero loss measurement results is encountered, a smallest of lossy loadsis drained from the list. If the estimate average is smaller than the drained value, a weighted average ofthis estimate and the drained value is used as the next offered load. The weight of the estimate decreasesexponentially with the length of consecutive zero loss results.

15 https://en.wikipedia.org/wiki/Lomax_distribution16 https://en.wikipedia.org/wiki/Reciprocal_distribution17 https://en.wikipedia.org/wiki/Monte_Carlo_integration18 https://en.wikipedia.org/wiki/Importance_sampling19 https://en.wikipedia.org/wiki/Multivariate_normal_distribution

1.5. Test Methodology 23

https://en.wikipedia.org/wiki/Lomax_distribution
https://en.wikipedia.org/wiki/Reciprocal_distribution
https://en.wikipedia.org/wiki/Monte_Carlo_integration
https://en.wikipedia.org/wiki/Importance_sampling
https://en.wikipedia.org/wiki/Multivariate_normal_distribution

CSIT REPORT, Release rls19082

This behavior helps the algorithmwith convergence speed, as it does not need so many zero loss result toget near critical region. Using the smallest (not drained yet) of lossy loads makes it sure the new offeredload is unlikely to result in big loss region. Draining even if the estimate is large enough helps to discardearly measurements when loss hapened at too low offered load. Current implementation adds 4 copiesof lossy loads and drains 3 of them, which leads to fairly stable behavior even for somewhat inconsistentSUTs.
As high loss count measurements add many bits of information, they need a large amount of small losscountmeasurements to balance them, making the algorithm converge quite slowly. Typically, this happenswhen few initial measurements suggest spread way bigger then later measurements. The workaround inoffered load selection helps, but more intelligent workarounds could get faster convergence still.
Some systems evidently do not follow the assumption of repeated measurements having the same aver-age loss rate (when the offered load is the same). The idea of estimating the trend is not implemented atall, as the observed trends have varied characteristics.
Probably, using a more realistic fitting functions will give better estimates than trend analysis.
Bottom Line

The notion of Throughput is easy to grasp, but it is harder to measure with any accuracy for non-deterministic systems.
Even though the notion of critical rate is harder to grasp than the notion of throughput, it is easier tomeasure using probabilistic methods.
In testing, the difference between througput measurements and critical rate measurements is usuallysmall, see soak vs ndr comparison.
In pactice, rules of thumb such as “send at max 95% of purported throughput” are common. The correctbenchmarking analysis should ask “Which notion is 95% of throughput an approximation to?” beforeattempting to answer “Is 95% of critical rate safe enough?”.
Algorithmic Analysis

While the estimation computation is based on hard probability science; the offered load selection partof PLRsearch logic is pure heuristics, motivated by what would a human do based on measurement andcomputation results.
The quality of any heuristic is not affected by soundness of its motivation, just by its ability to achieve theintended goals. In case of offered load selection, the goal is to help the search to converge to the longduration estimates sooner.
But even those long duration estimates could still be of poor quality. Even though the estimate compu-tation is Bayesian (so it is the best it could be within the applied assumptions), it can still of poor qualitywhen compared to what a human would estimate.
One possible source of poor quality is the randomnes inherently present in Monte Carlo numeric integra-tion, but that can be supressed by tweaking the time related input parameters.
The most likely source of poor quality then are the assumptions. Most importantly, the number and theshape of fitting functions; but also others, such as trial order independence and duration independence.
The result can have poor quality in basically two ways. One way is related to location. Both upper andlower bounds can be overestimates or underestimates, meaning the entire estimated interval betweenlower bound and upper bound lays above or below (respectively) of human-estimated interval. The otherway is related to the estimation interval width. The interval can be too wide or too narrow, compared tohuman estimation.
An estimate from a particular fitting function can be classified as an overestimate (or underestimate) justby looking at time evolution (without human examining measurement results). Overestimates decreaseby time, underestimates increase by time (assuming the system performance stays constant).

24 Chapter 1. Introduction

CSIT REPORT, Release rls19082

Quality of the width of the estimation interval needs human evaluation, and is unrelated to both rate ofnarrowing (both good and bad estimate intervals get narrower at approximately the same relative rate)and relatative width (depends heavily on the system being tested).
The following pictures show the upper (red) and lower (blue) bound, as well as average of Stretch (pink)and Erf (light green) estimate, and offered load chosen (grey), as computed by PLRsearch, after each trialmeasurement within the 30 minute duration of a test run.
Both graphs are focusing on later estimates. Estimates computed from few initial measurements arewildlyoff the y-axis range shown.
The following analysis will rely on frequency of zero loss measurements and magnitude of loss ratio ifnonzero.
The offered load selection strategy used implies zero loss measurements can be gleaned from the graphby looking at offered load points. When the points move up farther from lower estimate, it means theprevious measurement had zero loss. After non-zero loss, the offered load starts again right between (theprevious values of) the estimate curves.
The very big loss ratio results are visible as noticeable jumps of both estimates downwards. Medium andsmall loss ratios are much harder to distinguish just by looking at the estimate curves, the analysis is basedon raw loss ratio measurement results.
The following descriptions should explain why the graphs seem to signal low quality estimate at first sight,but a more detailed look reveals the quality is good (considering the measurement results).
L2 patch

Both fitting functions give similar estimates, the graph shows “stochasticity” of measurements (estimatesincrease and decrease within small time regions), and an overall trend of decreasing estimates.
On the first look, the final interval looks fairly narrow, especially compared to the region the estimateshave travelled during the search. But the look at the frequency of zero loss results shows this is not a caseof overestimation. Measurements at around the same offered load have higher probability of zero lossearlier (when performed farther from upper bound), but smaller probability later (when performed closerto upper bound). That means it is the performance of the system under test that decreases (slightly) overtime.
With that in mind, the apparent narrowness of the interval is not a sign of low quality, just a consequenceof PLRsearch assuming the performance stays constant.

1.5. Test Methodology 25

CSIT REPORT, Release rls19082

Vhost

This test case shows what looks like a quite broad estimation interval, compared to other test cases withsimilarly looking zero loss frequencies. Notable features are infrequent high-loss measurement resultscausing big drops of estimates, and lack of long-term convergence.
Any convergence in medium-sized intervals (during zero loss results) is reverted by the big loss results, asthey happen quite far from the critical load estimates, and the two fitting functions extrapolate differently.
In other words, human only seeing estimates from one fitting function would expect narrower end inter-val, but human seeing the measured loss ratios agrees that the interval should be wider than that.

Summary

The two graphs show the behavior of PLRsearch algorithm applied to soaking test when some ofPLRsearch assumptions do not hold:
• L2 patch measurement results violate the assumption of performance not changing over time.
• Vhost measurement results violate the assumption of Poisson distributionmatching the loss counts.

The reported upper and lower bounds can have distance larger or smaller than a first look by a humanwould expect, but a more closer look reveals the quality is good, considering the circumstances.
The usefullness of the critical load estimate is of questionable value when the assumptions are violated.
Some improvements can be made via more specific workarounds, for example long term limit of L2 patchperformance could be estmated by some heuristic.
Other improvements can be achieved only by asking users whether loss patterns matter. Is it better tohave single digit losses distributed fairly evenly over time (as Poisson distribution would suggest), or isit better to have short periods of medium losses mixed with long periods of zero losses (as happens inVhost test) with the same overall loss ratio?

26 Chapter 1. Introduction

CSIT REPORT, Release rls19082

1.5.6 Packet Latency

TRex Traffic Generator (TG) is used for measuring latency across 2-Node and 3-Node SUT server topolo-gies. TRex integrates A High Dynamic Range Histogram (HDRH)20 code providing per packet latencydistribution for latency streams sent in parallel to the main load packet streams. Packet latency is mea-sured using following methodology:
• Latency tests are performed at following packet load levels:

– No-Load: latency streams only.
– Low-Load: at 10% PDR.
– Mid-Load: at 50% PDR.
– High-Load: at 90% PDR.
– NDR-Load: at 100% NDR.
– PDR-Load: at 100% PDR.

• Latency is measured for all tested packet sizes except IMIX due to TG restriction.
• TG sends dedicated latency streams, one per direction, each at the rate of 9 kpps at the prescribedpacket size; these are sent in addition to the main load streams.
• TG reports Min/Avg/Max and HDRH latency values distribution per stream direction, hence twosets of latency values are reported per test case.
• Reported latency values are aggregate across tested topology.
• +/- 1 usec is the measurement accuracy advertised by TRex TG for the setup used.
• TG setup introduces an always-on Tx/Rx interface latency of about 2 * 2 usec per direction inducedby TRex SW writing and reading packet timestamps on CPU cores.

1.5.7 Multi-Core Speedup

All performance tests are executed with single physical core and with multiple cores scenarios.
Intel Hyper-Threading (HT)

Intel Xeon processors used in FD.io CSIT can operate either in HT Disabled mode (single logical core pereach physical core) or in HT Enabled mode (two logical cores per each physical core). HT setting is appliedin BIOS and requires server SUT reload for it to take effect, making it impractical for continuous changesof HT mode of operation.
CSIT-1908.2 performance tests are executed with server SUTs’ Intel XEON processors configured withIntel Hyper-Threading Disabled for all Xeon Haswell testbeds (3n-hsw) and with Intel Hyper-ThreadingEnabled for all Xeon Skylake and Xeon Cascadelake testbeds.
More information about physical testbeds is provided in Physical Testbeds (page 3).
Multi-core Tests

CSIT-1908.2 multi-core tests are executed in the following VPP worker thread and physical core config-urations:
1. Intel Xeon Haswell testbeds (3n-hsw) with Intel HT disabled (1 logical CPU core per each physicalcore):
1. 1t1c - 1 VPP worker thread on 1 physical core.

20 http://hdrhistogram.org/

1.5. Test Methodology 27

http://hdrhistogram.org/

CSIT REPORT, Release rls19082

2. 2t2c - 2 VPP worker threads on 2 physical cores.
3. 4t4c - 4 VPP worker threads on 4 physical cores.
1. Intel Xeon Skylake and Cascadelake testbeds (2n-skx, 3n-skx, 2n-clx) with Intel HT enabled (2 logicalCPU cores per each physical core):
1. 2t1c - 2 VPP worker threads on 1 physical core.
2. 4t2c - 4 VPP worker threads on 2 physical cores.
3. 8t4c - 8 VPP worker threads on 4 physical cores.

VPP worker threads are the data plane threads running on isolated logical cores. With Intel HT enabledVPP workers are placed as sibling threads on each used physical core. VPP control threads (main, stats)are running on a separate non-isolated core together with other Linux processes.
In all CSIT tests care is taken to ensure that each VPPworker handles the same amount of received packetload and does the same amount of packet processing work. This is achieved by evenly distributing perinterface type (e.g. physical, virtual) receive queues over VPP workers using default VPP round-robinmapping and by loading these queues with the same amount of packet flows.
If number of VPP workers is higher than number of physical or virtual interfaces, multiple receive queuesare configured on each interface. NIC Receive Side Scaling (RSS) for physical interfaces and multi-queuefor virtual interfaces are used for this purpose.
Section throughput_speedup_multi_core includes a set of graphs illustrating packet throughout speedupwhen running VPP worker threads on multiple cores. Note that in quite a few test cases running VPPworkers on 2 or 4 physical cores hits the I/O bandwidth or packets-per-second limit of tested NIC.

1.5.8 Hoststack Testing

HTTP/TCP with WRK

WRK HTTP benchmarking tool21 is used for TCP/IP and HTTP tests of VPP Host Stack and built-in staticHTTP server. WRK has been chosen as it is capable of generating significant TCP/IP and HTTP loads byscaling number of threads across multi-core processors.
This in turn enables high scale benchmarking of the VPP Host Stack TCP/IP and HTTP service includingHTTP TCP/IP Connections-Per-Second (CPS) and HTTP Requests-Per-Second.
The initial tests are designed as follows:

• HTTP and TCP/IP Connections-Per-Second (CPS)
– WRK configured to use 8 threads across 8 cores, 1 thread per core.
– Maximum of 50 concurrent connections across all WRK threads.
– Timeout for server responses set to 5 seconds.
– Test duration is 30 seconds.
– Expected HTTP test sequence:

* Single HTTP GET Request sent per open connection.
* Connection close after valid HTTP reply.
* Resulting flow sequence - 8 packets: >Syn, <Syn-Ack, >Ack, >Req, <Rep, >Fin, <Fin, >Ack.

• HTTP Requests-Per-Second
– WRK configured to use 8 threads across 8 cores, 1 thread per core.
– Maximum of 50 concurrent connections across all WRK threads.

21 https://github.com/wg/wrk

28 Chapter 1. Introduction

https://github.com/wg/wrk

CSIT REPORT, Release rls19082

– Timeout for server responses set to 5 seconds.
– Test duration is 30 seconds.
– Expected HTTP test sequence:

* Multiple HTTP GET Requests sent in sequence per open connection.
* Connection close after set test duration time.
* Resulting flow sequence: >Syn, <Syn-Ack, >Ack, >Req[1], <Rep[1], .., >Req[n], <Rep[n],>Fin, <Fin, >Ack.

TCP/IP with iperf3

iperf3 goodput measurement tool22 is used for measuring the maximum attainable goodput of the VPPHost Stack connection across two instances of VPP running on separate DUT nodes. iperf3 is a popularopen source tool for active measurements of the maximum achievable goodput on IP networks.
Because iperf3 utilizes the POSIX socket interface APIs, the current test configuration utilizes theLD_PRELOAD mechanism in the linux kernel to connect iperf3 to the VPP Host Stack using the VPPCommunications Library (VCL) LD_PRELOAD library (libvcl_ldpreload.so).
In the future, a forked version of iperf3 which has been modified to directly use the VCL application APIsmay be added to determine the difference in performance of ‘VCL Native’ applications versus utilizingLD_PRELOAD which inherently has more overhead and other limitations.
The test configuration is as follows:

DUT1 Network DUT2
[iperf3-client -> VPP1]=======[VPP2 -> iperf3-server]

where,
1. iperf3 server attaches to VPP2 and LISTENs on VPP2:TCP port 5201.
2. iperf3 client attaches to VPP1 and opens one or more stream connections to VPP2:TCP port 5201.
3. iperf3 client transmits a uni-directional stream as fast as the VPP Host Stack allows to the iperf3server for the test duration.
4. At the end of the test the iperf3 client emits the goodput measurements for all streams and the sumof all streams.

Test cases include 1 and 10 Streams with a 20 second test duration with the VPP Host Stack configuredto utilize the Cubic TCP congestion algorithm.
Note: iperf3 is single threaded, so it is expected that the 10 stream test does not show any performanceimprovement due to multi-thread/multi-core execution.
There are also variations of these test cases which use the VPP Network Simulator (NSIM) plugin to testthe VPP Hoststack goodput with 1 percent of the traffic being dropped at the output interface of VPP1thereby simulating a lossy network. TheNSIM tests are experimental and the test results are not currentlyrepresentative of typical results in a lossy network.
QUIC/UDP/IP with vpp_echo

vpp_echo performance testing tool23 is a bespoke performance test application which utilizes the ‘na-tive HostStack APIs’ to verify performance and correct handling of connection/stream events with uni-directional and bi-directional streams of data.
Because iperf3 does not support the QUIC transport protocol, vpp_echo is used for measuring the max-imum attainable goodput of the VPP Host Stack connection utilizing the QUIC transport protocol across

22 https://github.com/esnet/iperf23 https://wiki.fd.io/view/VPP/HostStack#External_Echo_Server.2FClient_.28vpp_echo.29

1.5. Test Methodology 29

https://github.com/esnet/iperf
https://wiki.fd.io/view/VPP/HostStack#External_Echo_Server.2FClient_.28vpp_echo.29

CSIT REPORT, Release rls19082

two instances of VPP running on separate DUT nodes. The QUIC transport protocol supports multiplestreams per connection and test cases utilize different combinations of QUIC connections and numberof streams per connection.
The test configuration is as follows:

DUT1 Network DUT2
[vpp_echo-client -> VPP1]=======[VPP2 -> vpp_echo-server]

N-streams/connection

where,
1. vpp_echo server attaches to VPP2 and LISTENs on VPP2:TCP port 1234.
2. vpp_echo client creates one or more connections to VPP1 and opens one or more stream per con-nection to VPP2:TCP port 1234.
3. vpp_echo client transmits a uni-directional stream as fast as the VPP Host Stack allows to thevpp_echo server for the test duration.
4. At the end of the test the vpp_echo client emits the goodput measurements for all streams and thesum of all streams.

Test cases include
1. 1 QUIC Connection with 1 Stream
2. 1 QUIC connection with 10 Streams
3. 10 QUIC connetions with 1 Stream
4. 10 QUIC connections with 10 Streams

with stream sizes to provide reasonable test durations. The VPP Host Stack QUIC transport is configuredto utilize the picotls encryption library. In the future, tests utilizing addtional encryption algorithms willbe added.

1.5.9 Reconfiguration Tests

Important: DISCLAIMER: Described reconf test methodology is experimental, and subject to changefollowing consultation within csit-dev, vpp-dev and user communities. Current test results should betreated as indicative.

Overview

Reconf tests are designed to measure the impact of VPP re-configuration on data plane traffic. WhileVPP takes some measures against the traffic being entirely stopped for a prolonged time, the immediateforwarding rate varies during the re-configuration, as some configurations steps need the active dataplaneworker threads to be stopped temporarily.
As the usual methods of measuring throughput need multiple trial measurements with somewhat longdurations, and the re-configuration process can also be long, finding an offered load which would resultin zero loss during the re-configuration process would be time-consuming.
Instead, reconf tests first find a througput value (lower bound for NDR) without re-configuration, andthen maintain that ofered load during re-configuration. The measured loss count is then assumed to becaused by the re-configuration process. The result published by reconf tests is the effective blocked time,that is the loss count divided by the offered load.

30 Chapter 1. Introduction

CSIT REPORT, Release rls19082

Current Implementation

Each reconf suite is based on a similar MLRsearch performance suite.
MLRsearch parameters are changed to speed up the throughput discovery. For example, PDR is notsearched for, and the final trial duration is shorter.
The MLRsearch suite has to contain a configuration parameter that can be scaled up, e.g. number of tun-nels or number of service chains. Currently, only increasing the scale is supported as the re-configurationoperation. In future, scale decrease or other operations can be implemented.
The traffic profile is not changed, so the traffic present is processed only by the smaller scale configuration.The added tunnels / chains are not targetted by the traffic.
For the re-configuration, the same Robot Framework and Python libraries are used, as were used in theinitial configuration, with the exception of the final calls that do not interact with VPP (e.g. starting virtualmachines) being skipped to reduce the test overall duration.
Discussion

Robot Framework introduces a certain overhead, which may affect timing of individual VPP API calls,which in turn may affect the number of packets lost.
The exact calls executed may contain unnecessary info dumps, repeated commands, or commands whichchange a value that do not need to be changed (e.g. MTU). Thus, implementation details are affecting theresults, even if their effect on the corresponding MLRsearch suite is negligible.
The lower bound forNDR is the only value safe to be usedwhen zero packets lost are expectedwithout re-configuration. But different suites show different “jitter” in that value. For some suites, the lower boundis not tight, allowing full NIC buffers to drain quickly between worker pauses. For other suites, lowerbound for NDR still has quite a large probability of non-zero packet loss even without re-configuration.

1.5.10 VPP Startup Settings

CSIT code manipulates a number of VPP settings in startup.conf for optimized performance. List of com-mon settings applied to all tests and test dependent settings follows.
See VPP startup.conf24 for a complete set and description of listed settings.
Common Settings

List of VPP startup.conf settings applied to all tests:
1. heap-size <value> - set separately for ip4, ip6, stats, main depending on scale tested.
2. no-tx-checksum-offload - disables UDP / TCP TX checksum offload in DPDK. Typically needed foruse faster vector PMDs (together with no-multi-seg).
3. buffers-per-numa <value> - sets a number of memory buffers allocated to VPP per CPU socket.VPP default is 16384. Needs to be increased for scenarios with large number of interfaces andworker threads. To accommodate for scale tests, CSIT is setting it to the maximum possible valuecorresponding to the limit of DPDK memory mappings (currently 256). For Xeon Skylake platformsconfigured with 2MB hugepages and VPP data-size and buffer-size defaults (2048B and 2496Brespectively), this results in value of 215040 (256 * 840 = 215040, 840 * 2496B buffers fit in 2MBhugepage). For Xeon Haswell nodes value of 107520 is used.

24 https://git.fd.io/vpp/tree/src/vpp/conf/startup.conf?h=stable/1908_2&id=fce396738f865293f0a023bc7f172086f81da456

1.5. Test Methodology 31

https://git.fd.io/vpp/tree/src/vpp/conf/startup.conf?h=stable/1908_2&id=fce396738f865293f0a023bc7f172086f81da456

CSIT REPORT, Release rls19082

Per Test Settings

List of vpp startup.conf settings applied dynamically per test:
1. corelist-workers <list_of_cores> - list of logical cores to run VPP worker data plane threads. De-pends on HyperThreading and core per test configuration.
2. num-rx-queues <value> - depends on a number of VPP threads and NIC interfaces.
3. no-multi-seg - disables multi-segment buffers in DPDK, improves packet throughput, but disablesJumbo MTU support. Disabled for all tests apart from the ones that require Jumbo 9000B framesupport.
4. UIO driver - depends on topology file definition.
5. QAT VFs - depends on NRThreads, each thread = 1QAT VFs.

1.5.11 KVM VMs vhost-user

QEMU is used for KVM VM vhost-user testing enviroment. By default, standard QEMU version is used,preinstalled from OS repositories (qemu-2.11.1 for Ubuntu 18.04). The path to the QEMU binary can beadjusted in Constants.py.
FD.io CSIT performance lab is testing VPP vhost-user with KVM VMs using following environment set-tings:
CSIT supports two types of VMs:

• Image-VM: used for all functional, VPP_device, and regular performance tests except NFV densitytests.
• Kernel-VM: new VM type introduced for NFV density tests to provide greater in-VM applicationinstall flexibility and to further reduce test execution time by simpler VM lifecycle management.

Image-VM

CSIT can use a pre-created VM image. The path to the image can be adjusted in Constants.py. For con-venience and full compatibility CSIT repository contains a set of scripts to prepare Built-root25 basedembedded Linux image with all the dependencies needed to run DPDK Testpmd, DPDK L3Fwd, Linuxbridge or Linux IPv4 forwarding.
Built-root was chosen for a VM image to make it lightweight and with fast booting time to limit impacton tests duration.
In order to execute CSIT tests, VM imagemust have following software installed: qemu-guest-agent, sshd,bridge-utils, VirtIO support and DPDK Testpmd/L3fwd applications. Username/password for the VMmust be cisco/cisco and NOPASSWD sudo access. The interface naming is based on the driver (managementinterface type is Intel E1000), all E1000 interfaces will be named mgmt<n> and all VirtIO interfaces willbe named virtio<n>. In VM /etc/init.d/qemu-guest-agent must be set to TRANSPORT=isa-serial:/
dev/ttyS1 because ttyS0 is used by serial console and ttyS1 is dedicated for qemu-guest-agent in QEMUsetup.
Kernel-VM

CSIT can use a kernel KVM image as a boot kernel, as an alternative to image VM. This option allowsbetter configurability of what application is running in VM userspace. Using root9p filesystem allowsmapping the host-OS filesystem as read only guest-OS filesystem.
Example of custom init script for the kernel-VM:

25 https://buildroot.org/

32 Chapter 1. Introduction

https://buildroot.org/

CSIT REPORT, Release rls19082

#!/bin/bash
mount -t sysfs -o "nodev,noexec,nosuid" sysfs /sys
mount -t proc -o "nodev,noexec,nosuid" proc /proc
mkdir /dev/pts
mkdir /dev/hugepages
mount -t devpts -o "rw,noexec,nosuid,gid=5,mode=0620" devpts /dev/pts || true
mount -t tmpfs -o "rw,noexec,nosuid,size=10%,mode=0755" tmpfs /run
mount -t tmpfs -o "rw,noexec,nosuid,size=10%,mode=0755" tmpfs /tmp
mount -t hugetlbfs -o "rw,relatime,pagesize=2M" hugetlbfs /dev/hugepages
echo 0000:00:06.0 > /sys/bus/pci/devices/0000:00:06.0/driver/unbind
echo 0000:00:07.0 > /sys/bus/pci/devices/0000:00:07.0/driver/unbind
echo vfio-pci > /sys/bus/pci/devices/0000:00:06.0/driver_override
echo vfio-pci > /sys/bus/pci/devices/0000:00:07.0/driver_override
echo 0000:00:06.0 > /sys/bus/pci/drivers/vfio-pci/bind
echo 0000:00:07.0 > /sys/bus/pci/drivers/vfio-pci/bind
$vnf_bin
poweroff -f

QemuUtils library during runtime replaces the $vnf_bin variable by the path to NF binary and its param-eters. This allows CSIT to run any application installed on host OS, for example the same version of VPPas running on the host-OS.
Kernel-VM image must be available in the host filesystem as a prerequisite. The path to kernel-VM imageis defined in Constants.py.

1.5.12 LXC/DRC Container Memif

CSIT includes tests taking advantage of VPP memif virtual interface (shared memory interface) to inter-connect VPP running in Containers. VPP vswitch instance runs in bare-metal user-mode handling NICinterfaces and connecting over memif (Slave side) to VPPs running in Linux Container (LXC) or in DockerContainer (DRC) configured with memif (Master side). LXCs and DRCs run in a priviliged mode with VPPdata plane worker threads pinned to dedicated physical CPU cores per usual CSIT practice. All VPP in-stances run the same version of software. This test topology is equivalent to existing tests with vhost-userand VMs as described earlier in Logical Topologies (page 37).
In addition to above vswitch tests, a single memif interface test is executed. It runs in a simple topologyof two VPP container instances connected over memif interface in order to verify standalone memifinterface performance.
More information about CSIT LXC and DRC setup and control is available in Container Orchestration in
CSIT (page 162).

1.5.13 NFV Service Density

Network Function Virtualization (NFV) service density tests focus on measuring total per server through-put at varied NFV service “packing” densities with vswitch providing host dataplane. The goal is to com-pare and contrast performance of a shared vswitch for different network topologies and virtualizationtechnologies, and their impact on vswitch performance and efficiency in a range of NFV service configu-rations.
Each NFV service instance consists of a set of Network Functions (NFs), running in VMs (VNFs) or inContainers (CNFs), that are connected into a virtual network topology using VPP vswitch running in Linuxuser-mode. Multiple service instances share the vswitch that in turn provides per service chain forwardingcontext(s). In order to provide a most complete picture, each network topology and service configurationis tested in different service density setups by varying two parameters:

• Number of service instances (e.g. 1, 2, 4, 6, 8, 10).
• Number of NFs per service instance (e.g. 1, 2, 4, 6, 8, 10).

Implementation of NFV service density tests in CSIT-1908.2 is using two NF applications:
1.5. Test Methodology 33

CSIT REPORT, Release rls19082

• VNF: VPP of the same version as vswitch running in KVM VM, configured with /8 IPv4 prefix rout-ing.
• CNF: VPP of the same version as vswitch running in Docker Container, configured with /8 IPv4prefix routing.

Tests are designed such that in all tested cases VPP vswitch is the most stressed application, as for eachflow vswitch is processing each packet multiple times, whereas VNFs and CNFs process each packetsonly once. To that end, all VNFs and CNFs are allocated enough resources to not become a bottleneck.
Service Configurations

Following NFV network topologies and configurations are tested:
• VNF Service Chains (VSC) with L2 vswitch

– Network Topology: Sets of VNFs dual-homed to VPP vswitch over virtio-vhost links. Each setbelongs to separate service instance.
– Network Configuration: VPP L2 bridge-domain contexts form logical service chains of VNF setsand connect each chain to physical interfaces.

• CNF Service Chains (CSC) with L2 vswitch
– Network Topology: Sets of CNFs dual-homed to VPP vswitch overmemif links. Each set belongsto separate service instance.
– Network Configuration: VPP L2 bridge-domain contexts form logical service chains of CNF setsand connect each chain to physical interfaces.

• CNF Service Pipelines (CSP) with L2 vswitch
– Network Topology: Sets of CNFs connected into pipelines over a series ofmemif links, with edgeCNFs single-homed to VPP vswitch over memif links. Each set belongs to separate serviceinstance.
– Network Configuration: VPP L2 bridge-domain contexts connect each CNF pipeline to physicalinterfaces.

Thread-to-Core Mapping

CSIT defines specific ratios for mapping software threads of vswitch and VNFs/CNFs to physical cores,with separate ratios defined for main control threads and data-plane threads.
In CSIT-1908.2 NFV service density tests run on Intel Xeon testbeds with Intel Hyper-Threading enabled,so each physical core is associated with a pair of sibling logical cores corresponding to the hyper-threads.
CSIT-1908.2 executes tests with the following software thread to physical core mapping ratios:

• vSwitch
– Data-plane on single core

* (main:core) = (1:1) => 1mt1c - 1 main thread on 1 core.
* (data:core) = (1:1) => 2dt1c - 2 Data-plane Threads on 1 Core.

– Data-plane on two cores
* (main:core) = (1:1) => 1mt1c - 1 Main Thread on 1 Core.
* (data:core) = (1:2) => 4dt2c - 4 Data-plane Threads on 2 Cores.

• VNF and CNF
– Data-plane on single core

34 Chapter 1. Introduction

data:core
data:core

CSIT REPORT, Release rls19082

* (main:core) = (2:1) => 2mt1c - 2 Main Threads on 1 Core, 1 Thread per NF, core sharedbetween two NFs.
* (data:core) = (1:1) => 2dt1c - 2 Data-plane Threads on 1 Core per NF.

– Data-plane on single logical core (Two NFs per physical core)
* (main:core) = (2:1) => 2mt1c - 2 Main Threads on 1 Core, 1 Thread per NF, core sharedbetween two NFs.
* (data:core) = (2:1) => 2dt1c - 2Data-plane Threads on 1 Core, 1 Thread per NF, core sharedbetween two NFs.

Maximum tested service densities are limited by a number of physical cores per NUMA. CSIT-1908.2allocates cores within NUMA0. Support for multi NUMA tests is to be added in future release.

1.5.14 VPP_Device Functional

CSIT-1908.2 includes VPP_Device test environment for functional VPP device tests integrated into LFNCI/CD infrastructure. VPP_Device tests run on 1-Node testbeds (1n-skx, 1n-arm) and rely on Linux SRIOVVirtual Function (VF), dot1q VLAN tagging and external loopback cables to facilitate packet passing overexternal physical links. Initial focus is on few baseline tests. New device tests can be added by small editsto existing CSIT Performance (2-node) test. RF test definition code stays unchanged with the exceptionof traffic generator related L2 KWs.

1.5.15 IPSec on Intel QAT

VPP IPSec performance tests are usingDPDK cryptodev device driver in combinationwith HWcryptodevdevices - Intel QAT 8950 50G - present in LF FD.io physical testbeds. DPDK cryptodev can be used forall IPSec data plane functions supported by VPP.
Currently CSIT-1908.2 implements following IPSec test cases:

• AES-GCM, CBC-SHA1 ciphers, in combination with IPv4 routed-forwarding with Intel xl710 NIC.
• CBC-SHA1 ciphers, in combination with LISP-GPE overlay tunneling for IPv4-over-IPv4 with Intelxl710 NIC.

1.5.16 TRex Traffic Generator

Usage

TRex traffic generator26 is used for all CSIT performance tests. TRex stateless mode is used to measureNDR and PDR throughputs using MLRsearch and to measure maximum transer rate in MRR tests.
TRex is installed and run on the TG compute node. The typical procedure is:

• If the TRex is not already installed on TG, it is installed in the suite setup phase - see TRex installa-tion27.
• TRex configuration is set in its configuration file

/etc/trex_cfg.yaml

• TRex is started in the background mode
$ sh -c 'cd <t-rex-install-dir>/scripts/ && sudo nohup ./t-rex-64 -i --prefix $(hostname) --
→˓hdrh --no-scapy-server > /tmp/trex.log 2>&1 &' > /dev/null

26 https://trex-tgn.cisco.com27 https://git.fd.io/csit/tree/resources/tools/trex/trex_installer.sh?h=rls1908_2

1.5. Test Methodology 35

data:core
data:core
https://trex-tgn.cisco.com
https://git.fd.io/csit/tree/resources/tools/trex/trex_installer.sh?h=rls1908_2
https://git.fd.io/csit/tree/resources/tools/trex/trex_installer.sh?h=rls1908_2

CSIT REPORT, Release rls19082

• There are traffic streams dynamically prepared for each test, based on traffic profiles. The traffic issent and the statistics obtained using trex.stl.api.STLClient.
Measuring Packet Loss

Following sequence is followed to measure packet loss:
• Create an instance of STLClient.
• Connect to the client.
• Add all streams.
• Clear statistics.
• Send the traffic for defined time.
• Get the statistics.

If there is a warm-up phase required, the traffic is sent also before test and the statistics are ignored.
Measuring Latency

If measurement of latency is requested, twomore packet streams are created (one for each direction) withTRex flow_stats parameter set to STLFlowLatencyStats. In that case, returned statistics will also includemin/avg/max latency values and encoded HDRHstogram data.

36 Chapter 1. Introduction

CHAPTER

TWO

VPP PERFORMANCE

2.1 Overview

VPP performance test results are reported for all three physical testbed types present in FD.io labs: 3-Node Xeon Haswell (3n-hsw), 3-Node Xeon Skylake (3n-skx), 2-Node Xeon Skylake (2n-skx) and installedNIC models. For description of physical testbeds used for VPP performance tests please refer to Physical
Testbeds (page 3).

2.1.1 Logical Topologies

CSIT VPP performance tests are executed on physical testbeds described in Physical Testbeds (page 3).Based on the packet path thru server SUTs, three distinct logical topology types are used for VPP DUTdata plane testing:
1. NIC-to-NIC switching topologies.
2. VM service switching topologies.
3. Container service switching topologies.

NIC-to-NIC Switching

The simplest logical topology for software data plane application like VPP is NIC-to-NIC switching. Testedtopologies for 2-Node and 3-Node testbeds are shown in figures below.

37

CSIT REPORT, Release rls19082

System Under Test (SUT)

 DUT

Traffic Generator (TG)

NIC

Linux
Kernel

Linux-Host
User-Space

2-Node Topology: NIC-to-NIC Switching

Forwarding
Context

System Under Test 1 (SUT1)

 DUT1

Traffic Generator (TG)

NIC

Linux
Kernel

Linux-Host
User-Space

System Under Test 2 (SUT2)

 DUT2

NIC

Linux
Kernel

Linux-Host
User-Space

3-Node Topology: NIC-to-NIC Switching

Forwarding
Context

Forwarding
Context

Server Systems Under Test (SUT) run VPP application in Linux user-mode as a Device Under Test (DUT).Server Traffic Generator (TG) runs T-Rex application. Physical connectivity between SUTs and TG is pro-vided using different drivers and NIC models that need to be tested for performance (packet/bandwidththroughput and latency).
From SUT andDUT perspectives, all performance tests involve forwarding packets between two (ormore)physical Ethernet ports (10GE, 25GE, 40GE, 100GE). In most cases both physical ports on SUT are locatedon the same NIC. The only exceptions are link bonding and 100GE tests. In the latter case only one portper NIC can be driven at linerate due to PCIe Gen3 x16 slot bandwidth limiations. 100GE NICs are notsupported in PCIe Gen3 x8 slots.

38 Chapter 2. VPP Performance

CSIT REPORT, Release rls19082

Note that reported VPP DUT performance results are specific to the SUTs tested. SUTs with other pro-cessors than the ones used in FD.io lab are likely to yield different results. A good rule of thumb, thatcan be applied to estimate VPP packet thoughput for NIC-to-NIC switching topology, is to expect theforwarding performance to be proportional to processor core frequency for the same processor architec-ture, assuming processor is the only limiting factor and all other SUT parameters are equivalent to FD.ioCSIT environment.
VM Service Switching

VM service switching topology test cases require VPP DUT to communicate with Virtual Machines (VMs)over vhost-user virtual interfaces.
Two types of VM service topologies are tested in CSIT-1908.2:

1. “Parallel” topology with packets flowing within SUT from NIC(s) via VPP DUT to VM, back to VPPDUT, then out thru NIC(s).
2. “Chained” topology (a.k.a. “Snake”) with packets flowing within SUT from NIC(s) via VPP DUT toVM, back to VPP DUT, then to the next VM, back to VPP DUT and so on and so forth until the lastVM in a chain, then back to VPP DUT and out thru NIC(s).

For each of the above topologies, VPP DUT is tested in a range of L2 or IPv4/IPv6 configurations de-pending on the test suite. Sample VPP DUT “Chained” VM service topologies for 2-Node and 3-Nodetestbeds with each SUT running N of VM instances is shown in the figures below.

2-Node Topology: VM Service Switching

System Under Test (SUT)

VM[n]VM[1] VM[2]

DUT

Traffic Generator

Linux
Kernel

Linux-Host
User-Space

VNF[1]
…

VNF[2] VNF[n]

NIC

…
Fwd

Cxt[0]
Fwd

Cxt[1]
Fwd

Cxt[2]
Fwd

Cxt[n]

2.1. Overview 39

CSIT REPORT, Release rls19082

3-Node Topology: VM Service Switching

System Under Test 1 (SUT1)

VM[n]VM[1] VM[2]

DUT1

Traffic Generator (TG)

Linux
Kernel

Linux-Host
User-Space

VNF[1]
…

VNF[2] VNF[n]

NIC

…
Fwd

Cxt[0]
Fwd

Cxt[1]
Fwd

Cxt[2]
Fwd

Cxt[n]

System Under Test 2 (SUT2)

VM[n]VM[1] VM[2]

DUT2

Linux
Kernel

Linux-Host
User-Space

VNF[1]
…

VNF[2] VNF[n]

NIC

…
Fwd

Cxt[0]
Fwd

Cxt[1]
Fwd

Cxt[2]
Fwd

Cxt[n]

In “Chained” VM topologies, packets are switched by VPP DUT multiple times: twice for a single VM,three times for two VMs, N+1 times for N VMs. Hence the external throughput rates measured by TGand listed in this report must be multiplied by N+1 to represent the actual VPP DUT aggregate packetforwarding rate.
For “Parallel” service topology packets are always switched twice by VPP DUT per service chain.
Note that reported VPPDUT performance results are specific to the SUTs tested. SUTswith other proces-sor than the ones used in FD.io lab are likely to yield different results. Similarly to NIC-to-NIC switchingtopology, here one can also expect the forwarding performance to be proportional to processor corefrequency for the same processor architecture, assuming processor is the only limiting factor. Howeverdue to much higher dependency on intensive memory operations in VM service chained topologies andsensitivity to Linux scheduler settings and behaviour, this estimation may not always yield good enoughaccuracy.
Container Service Switching

Container service switching topology test cases require VPP DUT to communicate with Containers (Ctrs)over memif virtual interfaces.
Three types of VM service topologies are tested in CSIT-1908.2:

1. “Parallel” topology with packets flowing within SUT from NIC(s) via VPP DUT to Container, back toVPP DUT, then out thru NIC(s).
2. “Chained” topology (a.k.a. “Snake”) with packets flowing within SUT from NIC(s) via VPP DUT toContainer, back to VPP DUT, then to the next Container, back to VPP DUT and so on and so forthuntil the last Container in a chain, then back to VPP DUT and out thru NIC(s).
3. “Horizontal” topology with packets flowing within SUT from NIC(s) via VPP DUT to Container, thenvia “horizontal” memif to the next Container, and so on and so forth until the last Container, thenback to VPP DUT and out thru NIC(s).

For each of the above topologies, VPPDUT is tested in a range of L2 or IPv4/IPv6 configurations depend-ing on the test suite. Sample VPP DUT “Chained” Container service topologies for 2-Node and 3-Nodetestbeds with each SUT running N of Container instances is shown in the figures below.

40 Chapter 2. VPP Performance

CSIT REPORT, Release rls19082

2-Node Topology: Container Service Switching

System Under Test (SUT)

Ctr[n]Ctr[1] Ctr[2]

DUT

Traffic Generator

Linux
Kernel

Linux-Host
User-Space

CNF[1]
…

CNF[2] CNF[n]

NIC

…
Fwd

Cxt[0]
Fwd

Cxt[1]
Fwd

Cxt[2]
Fwd

Cxt[n]

3-Node Topology: Container Service Switching

System Under Test 1 (SUT1)

Ctr[n]Ctr[1] Ctr[2]

DUT1

Traffic Generator (TG)

Linux
Kernel

Linux-Host
User-Space

CNF[1]
…

CNF[2] CNF[n]

NIC

…
Fwd

Cxt[0]
Fwd

Cxt[1]
Fwd

Cxt[2]
Fwd

Cxt[n]

System Under Test 2 (SUT2)

Ctr[n]Ctr[1] Ctr[2]

DUT2

Linux
Kernel

Linux-Host
User-Space

CNF[1]
…

CNF[2] CNF[n]

NIC

…
Fwd

Cxt[0]
Fwd

Cxt[1]
Fwd

Cxt[2]
Fwd

Cxt[n]

In “Chained” Container topologies, packets are switched by VPP DUT multiple times: twice for a singleContainer, three times for two Containers, N+1 times for N Containers. Hence the external throughputrates measured by TG and listed in this report must be multiplied by N+1 to represent the actual VPPDUT aggregate packet forwarding rate.
For a “Parallel” and “Horizontal” service topologies packets are always switched by VPP DUT twice perservice chain.
Note that reported VPPDUT performance results are specific to the SUTs tested. SUTswith other proces-sor than the ones used in FD.io lab are likely to yield different results. Similarly to NIC-to-NIC switchingtopology, here one can also expect the forwarding performance to be proportional to processor core fre-quency for the same processor architecture, assuming processor is the only limiting factor. However due
2.1. Overview 41

CSIT REPORT, Release rls19082

to much higher dependency on intensive memory operations in Container service chained topologies andsensitivity to Linux scheduler settings and behaviour, this estimation may not always yield good enoughaccuracy.

2.1.2 Performance Tests Coverage

Performance tests measure following metrics for tested VPP DUT topologies and configurations:
• Packet Throughput: measured in accordance with RFC 254428, using FD.io CSITMultiple Loss Ratiosearch (MLRsearch), an optimized binary search algorithm, producing throughput at different PacketLoss Ratio (PLR) values:

– Non Drop Rate (NDR): packet throughput at PLR=0%.
– Partial Drop Rate (PDR): packet throughput at PLR=0.5%.

• One-Way Packet Latency: measured at different offered packet loads:
– 100% of discovered NDR throughput.
– 100% of discovered PDR throughput.

• Maximum Receive Rate (MRR): measure packet forwarding rate under the maximum load offeredby traffic generator over a set trial duration, regardless of packet loss. Maximum load for specifiedEthernet frame size is set to the bi-directional link rate.
CSIT-1908.2 includes following VPP data plane functionality performance tested across a range of NICdrivers and NIC models:

28 https://tools.ietf.org/html/rfc2544.html

42 Chapter 2. VPP Performance

https://tools.ietf.org/html/rfc2544.html

CSIT REPORT, Release rls19082

Functionality DescriptionACL L2 Bridge-Domain switching and IPv4and IPv6 routing with iACL and oACL IP ad-dress, MAC address and L4 port security.COP IPv4 and IPv6 routing with COP address security.IPv4 IPv4 routing.IPv6 IPv6 routing.IPv4 Scale IPv4 routing with 20k, 200k and 2M FIB entries.IPv6 Scale IPv6 routing with 20k, 200k and 2M FIB entries.IPSecHW IPSec encryption with AES-GCM, CBC-SHA-256 ciphers, in combination with IPv4routing. Intel QAT HW acceleration.IPSec+LISP IPSec encryptionwith CBC-SHA1 ciphers, in combinationwith LISP-GPE overlay tun-neling for IPv4-over-IPv4.IPSecSW IPSec encryption with AES-GCM, CBC-SHA-256 ciphers, in combination with IPv4routing.KVM VMsvhost-user Virtual topologies with service chains of 1 VM using vhost-user interfaces, with dif-ferent VPP forwarding modes incl. L2XC, L2BD, VXLAN with L2BD, IPv4 routing.L2BD L2 Bridge-Domain switching of untagged Ethernet frames with MAC learning; dis-abled MAC learning i.e. static MAC tests to be added.L2BD Scale L2 Bridge-Domain switching of untagged Ethernet frames with MAC learning; dis-abled MAC learning i.e. static MAC tests to be added with 20k, 200k and 2M FIBentries.L2XC L2 Cross-Connect switching of untagged, dot1q, dot1ad VLAN tagged Ethernetframes.LISP LISP overlay tunneling for IPv4-over-IPv4, IPv6-over-IPv4, IPv6-over-IPv6, IPv4-over-IPv6 in IPv4 and IPv6 routing modes.LXC/DRCContainersMemif
Container VPP memif virtual interface tests with different VPP forwarding modesincl. L2XC, L2BD.

NAT (Source) Network Address Translation tests with varying number of users and portsper user.QoS Policer Ingress packet rate measuring, marking and limiting (IPv4).SRv6 Routing Segment Routing IPv6 tests.VPP TCP/IPstack Tests of VPP TCP/IP stack used with VPP built-in HTTP server.
VTS Virtual Topology System use case tests combining VXLAN overlay tunneling withL2BD, ACL and KVM VM vhost-user features.VXLAN VXLAN overlay tunnelling integration with L2XC and L2BD.

Execution of performance tests takes time, especially the throughput tests. Due to limited HW testbedresources available within FD.io labs hosted by LF, the number of tests for some NIC models has beenlimited to few baseline tests.

2.1.3 Performance Tests Naming

FD.io CSIT-1908.2 follows a common structured naming convention for all performance and system func-tional tests, introduced in CSIT-17.01.
The naming should be intuitive for majority of the tests. Complete description of FD.io CSIT test namingconvention is provided on Test Naming (page 185).

2.1. Overview 43

CSIT REPORT, Release rls19082

2.2 Release Notes

2.2.1 Changes in CSIT-1908.2

1. VPP PERFORMANCE TESTS
• Intel Xeon 2n-skx, 3n-skx testbeds: VPP performance test data is provided using a differentCSIT test environment compared to CSIT-1908.1 and CSIT-1908. The changes were appliedduring the CSIT-2001 development cycle.

– CSIT test environment is now versioned, with ver. 1 associated with CSIT rls1908 gitbranch as of 2019-08-21, and ver. 2 associated with CSIT rls2001 git branch as of 2020-03-27.
– To identify performance changes due to VPP code changes from v19.08.1 to v19.08.2,both have been tested in CSIT environment ver. 2. See Current vs. Previous Release(page 121) and Known Issues (page 45).

• Intel Xeon 2n-clx testbeds: VPP performance test data is now included in this report. See
Known Issues (page 45).

• Service density 2n-skx tests: Added higher NF density tests with 802.1q (vlan) and VXLANencapsulation from Traffic Generator.
• GBP tests: Added GBP (Group Based Policy) routing test cases with 802.1q (vlan) externaltraffic.
• AVF IPv4 scale tests: Increased coverage of AVF IPv4 base and scale test cases (Fortville NICsonly).
• 2n-skx tests: Increased coverage of selected (COP, iACL, Policer) test cases.
• IPsec scale tests: Added IPsec interface mode scale tests with 1, 40, 400, 1000, 5000, 10000,20000, 40000, 60000 IPsec tunnels. Removed DPDK backend dependency. Major IPsec testcode refactoring.
• Hoststack TCP/IP tests: Major refactor of Hoststack TCP performance tests using WRK gen-erator talking to the VPP HTTP static server plugin measuring connections per second andrequests per second.
• Changed methodology of dot1q tests in 2-Node testbeds: dot1q encapsulation is now usedon both links of SUT. Previously dot1qwas used only on a single linkwith the other link carryinguntagged Ethernet frames. This change results in slightly lower throughput in CSIT-1908 forall dot1q tests in all 2-Node testbeds.
• KVM VM vhost-user tests: completed move to Kernel-VM for all tests. In addition to runningDPDK Testpmd as VM workload, new tests created with VPP as VM workload. VPP in VM isthe same version as the DUT VPP (acting as vSwitch) and its configuration depends on the testtype. For all L2 Ethernet Switching tests it’s vpp-l2xc (L2 cross-connect), for all IPv4 Routingtests it’s vpp-ip4 (VPP IPv4 routing).

2. TEST FRAMEWORK
• CSIT PAPI Support: Finished conversion of CSIT VAT L1 keywords to PAPI L1 KWs in CSITusing VPP Python bindings (VPP PAPI). Redesign of key components of PAPI Socket Executorand PAPI history. Due to issues with PAPI performance, VAT is still used in CSIT for all VPPscale tests. See known issues below.
• General Code Housekeeping: Ongoing RF keywords optimizations, removal of redundant RFkeywords and aligning of suite/test setup/teardowns.

3. PRESENTATION AND ANALYTICS LAYER
• Graphs Layout Improvements: Improved performance graphs layout for better readibility andmaintenance: test grouping, axis labels, descriptions, other informative decoration.

44 Chapter 2. VPP Performance

CSIT REPORT, Release rls19082

2.2.2 Known Issues

List of known issues in CSIT-1908.2 for VPP performance tests:
Ji-raID Issue Description
1 CSIT-57029 Sporadic (1 in 200) NDR discovery test failures on x520. DPDK reporting rx-errors, indi-cating L1 issue. Suspected issue with HW combination of X710-X520 in LF testbeds. Notobserved outside of LF testbeds.2 VPP-66230 9000B packets not supported by NICs VIC1227 and VIC1387.
3 CSIT-149831 Memif tests are sporadically failing on initialization of memif connection.
4 VPP-167632 9000B ip4 memif errors - ip4-input: ip4 length > l2 length. IP4 jumbo frames (9000B) aredropped in case of tests with memif.5 VPP-167733 9000B ip4 nat44: VPP crash + coredump. VPP crashes very often in case that NAT44 isconfigured and it has to process IP4 jumbo frames (9000B).6 CSIT-159134 All CSIT scale tests can not use PAPI due to much slower performance compared toVAT/CLI (it takes much longer to program VPP). This needs to be addressed on the PAPIside.VPP-1763357 CSIT-159336 IPv4 AVF 9000B packet tests are failing on 3n-skx while passing on 2n-skx.

29 https://jira.fd.io/browse/CSIT-57030 https://jira.fd.io/browse/VPP-66231 https://jira.fd.io/browse/CSIT-149832 https://jira.fd.io/browse/VPP-167633 https://jira.fd.io/browse/VPP-167734 https://jira.fd.io/browse/CSIT-159135 https://jira.fd.io/browse/VPP-176336 https://jira.fd.io/browse/CSIT-1593

2.2. Release Notes 45

https://jira.fd.io/browse/CSIT-570
https://jira.fd.io/browse/CSIT-570
https://jira.fd.io/browse/VPP-662
https://jira.fd.io/browse/VPP-662
https://jira.fd.io/browse/CSIT-1498
https://jira.fd.io/browse/CSIT-1498
https://jira.fd.io/browse/VPP-1676
https://jira.fd.io/browse/VPP-1676
https://jira.fd.io/browse/VPP-1677
https://jira.fd.io/browse/VPP-1677
https://jira.fd.io/browse/CSIT-1591
https://jira.fd.io/browse/CSIT-1591
https://jira.fd.io/browse/VPP-1763
https://jira.fd.io/browse/VPP-1763
https://jira.fd.io/browse/CSIT-1593
https://jira.fd.io/browse/CSIT-1593

CSIT REPORT, Release rls19082

2.3 Packet Throughput

Throughput graphs are generated based on the results data obtained from the CSIT-1908.2 test jobs.In order to verify benchmark results repeatibility selected, CSIT performance tests are executed multi-ple times (target: 10 times) on each physical testbed type. Box-and-Whisker plots are used to displayvariations in measured throughput values.
Lists of tests selected for multiple execution and graphing are captured per testbed type intest_select_list_{testbed_type}.md37 files.
Graphs are split into sections as follows:

1. Header 1: VPP packet path and lookup types
• L2 Ethernet Switching: L2 bridge-doman, L2 cross-connect and L2 patch
• IPv4 Routing: IPv4 routing with /32 prefixes
• IPv6 Routing: IPv6 routing with /128 prefixes
• SRv6 Routing: SRv6 with IPv6 routing
• IPv4 Tunnels: IPv4 overlay tunnels
• KVM VMs vhost-user: KVM VMs connected over virtio and vhost-user interfaces
• LXC/DRC Container Memif: Linux containers and Docker containers connected over Memifinterfaces
• IPsec IPv4 Routing: IPsec encryption/decryption with IPv4 routing
• Virtual Topology System: VXLAN configurations with L2 bridge-domains

2. Header 2: testbeds and NIC models
• section name format:

– {testbed_type}-{nic_model}
• testbed_type:

– 2n-skx: 2-node Xeon Skylake
– 3n-skx: 3-node Xeon Skylake
– 2n-clx: 2-node Xeon Cascade Lake
– 3n-hsw: 3-node Xeon Haswell
– 3n-tsh: 3-node Arm TaiShan
– 2n-dnv: 2-node Atom Denverton
– 3n-dnv: 3-node Atom Denverton

• nic_model:
– xxv710: xxv710 2p25GE Intel (Fortville)
– x710: x710 4p10GE Intel (Fortville)
– xl710: xl710 2p40GE Intel (Fortville)
– x520: x520 2p10GE Intel (Niantic)
– x553: x553 2p10GE Intel (Niantic)

3. Header 3: test group names
• section name format:

37 https://git.fd.io/csit/tree/docs/job_specs

46 Chapter 2. VPP Performance

https://git.fd.io/csit/tree/docs/job_specs

CSIT REPORT, Release rls19082

– {frame_size}-{worker_thread_core_cfg}-{vpp_functionality}-{vpp_lookup_type}-{baseline_scale}-{nic_driver}
• frame_size:

– 64b: 64 byte frames, smallest frame size for untagged IPv4 packets
– 78b: 78 byte frames, smallest frame size for untagged IPv6 packets
– 114b: VXLAN encapsulated L2 frames
– imix: a sequence of (7x64B, 4x570, 1x1518) byte frames

• worker_thread_core_cfg:
– 1t1c: 1 worker thread on 1 core, hyper-threading not used
– 2t1c: 2 worker threads on 1 core, hyper-threading used

• vpp_functionality (optional):
– features: including input-acl, output-acl, macip-iacl, nat44
– srv6: srv6 encap/decap, proxy
– link-bonding: L2 link aggregation with 1 or 2 bonded links
– ipsec: IPsec encryption/decryption with different ciphers
– vts: Virtual Topology System specific tests

• vpp_lookup_type:
– l2switching, ip4routing, ip6routing, ip4tunnel, vhost, memif

• baseline_scale:
– base: baseline tests with less than 10 forwarding entries
– scale: scale tests with up to 2 million forwarding entries
– base-scale: both baseline and scale tests grouped together

• nic_driver:
– avf: VPP native avf driver for Intel Fortville NICs
– i40e: dpdk poll mode driver for Intel Fortville NICs
– ixgbe: dpdk poll mode driver for Intel Niantic NICs

For each test case, Box-and-Whisker plots show the quartiles (Min, 1st quartile / 25th percentile, 2ndquartile / 50th percentile / mean, 3rd quartile / 75th percentile, Max) across collected data set. Outliersare plotted as individual points.
Additional information about graph data:

1. Graph Title: describes tested packet path, testbed topology, processor model, NIC model, packetsize, number of cores and threads used by data plane workers and indication of VPP DUT configu-ration.
2. X-axis Labels: indices of individual test suites as listed in Graph Legend.
3. Y-axis Labels: measured Packets Per Second [pps] throughput values.
4. Graph Legend: lists X-axis indices with associated CSIT test suites executed to generate graphedtest results.
5. Hover Information: lists minimum, first quartile, median, third quartile, and maximum. If eithertype of outlier is present the whisker on the appropriate side is taken to 1.5×IQR from the quartile(the “inner fence”) rather than the max or min, and individual outlying data points are displayed asunfilled circles (for suspected outliers) or filled circles (for outliers). (The “outer fence” is 3×IQR fromthe quartile.)

2.3. Packet Throughput 47

CSIT REPORT, Release rls19082

Note: Test results have been generated by FD.io test executor vpp performance job 2n-skx38, FD.io testexecutor vpp performance job 3n-skx39, FD.io test executor vpp performance job 2n-clx40 with RF resultfiles csit-vpp-perf-1908_2-*.zip archived here. Required per test case data set size is 10, but for VPP teststhe actual size varies per test case and is <=10.

38 https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-1908_2-2n-skx39 https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-1908_2-3n-skx40 https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-1908_2-2n-clx

48 Chapter 2. VPP Performance

https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-1908_2-2n-skx
https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-1908_2-3n-skx
https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-1908_2-3n-skx
https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-1908_2-2n-clx

CSIT REPORT, Release rls19082

2.3.1 L2 Ethernet Switching

Following sections include summary graphs of VPP Phy-to-Phy performance with L2 Ethernet switching,including NDR throughput (zero packet loss) and PDR throughput (<0.5% packet loss). Performance is re-ported for VPP running in multiple configurations of VPPworker thread(s), a.k.a. VPP data plane thread(s),and their physical CPU core(s) placement.
CSIT source code for the test cases used for plots can be found in CSIT git repository41.

41 https://git.fd.io/csit/tree/tests/vpp/perf/l2?h=rls1908_2

2.3. Packet Throughput 49

https://git.fd.io/csit/tree/tests/vpp/perf/l2?h=rls1908_2

CSIT REPORT, Release rls19082

2n-skx-xxv710

64b-2t1c-l2switching-base-avf

1 2 3 4 5
0.00

5.00

10.0

15.0

20.0

25.0

30.0

1.	(10	runs)	avf-dot1q-l2bdbasemaclrn
2.	(10	runs)	avf-dot1q-l2bdbasemaclrn-gbp
3.	(00	run)	avf-eth-l2patch
4.	(10	runs)	avf-eth-l2xcbase
5.	(10	runs)	avf-eth-l2bdbasemaclrn

Throughput:	2n-skx-xxv710-64b-2t1c-l2switching-base-avf-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

50 Chapter 2. VPP Performance

CSIT REPORT, Release rls19082

1 2 3 4 5
0.00

5.00

10.0

15.0

20.0

25.0

30.0

35.0

1.	(10	runs)	avf-dot1q-l2bdbasemaclrn
2.	(10	runs)	avf-dot1q-l2bdbasemaclrn-gbp
3.	(00	run)	avf-eth-l2patch
4.	(10	runs)	avf-eth-l2xcbase
5.	(10	runs)	avf-eth-l2bdbasemaclrn

Throughput:	2n-skx-xxv710-64b-2t1c-l2switching-base-avf-pdr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

2.3. Packet Throughput 51

CSIT REPORT, Release rls19082

64b-2t1c-l2switching-base-dpdk

1 2 3 4 5
0.00

5.00

10.0

15.0

20.0

25.0

1.	(10	runs)	dot1q-l2xcbase
2.	(10	runs)	dot1q-l2bdbasemaclrn
3.	(00	run)	eth-l2patch
4.	(10	runs)	eth-l2xcbase
5.	(10	runs)	eth-l2bdbasemaclrn

Throughput:	2n-skx-xxv710-64b-2t1c-l2switching-base-dpdk-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

52 Chapter 2. VPP Performance

CSIT REPORT, Release rls19082

1 2 3 4 5
0.00

5.00

10.0

15.0

20.0

25.0

1.	(10	runs)	dot1q-l2xcbase
2.	(10	runs)	dot1q-l2bdbasemaclrn
3.	(00	run)	eth-l2patch
4.	(10	runs)	eth-l2xcbase
5.	(10	runs)	eth-l2bdbasemaclrn

Throughput:	2n-skx-xxv710-64b-2t1c-l2switching-base-dpdk-pdr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

2.3. Packet Throughput 53

CSIT REPORT, Release rls19082

64b-2t1c-l2switching-base-scale-dpdk

1 2 3 4
0.00

5.00

10.0

15.0

20.0

1.	(10	runs)	eth-l2bdbasemaclrn
2.	(10	runs)	eth-l2bdscale10kmaclrn
3.	(10	runs)	eth-l2bdscale100kmaclrn
4.	(10	runs)	eth-l2bdscale1mmaclrn

Throughput:	2n-skx-xxv710-64b-2t1c-l2switching-base-scale-dpdk-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

54 Chapter 2. VPP Performance

CSIT REPORT, Release rls19082

1 2 3 4
0.00

5.00

10.0

15.0

20.0

1.	(10	runs)	eth-l2bdbasemaclrn
2.	(10	runs)	eth-l2bdscale10kmaclrn
3.	(10	runs)	eth-l2bdscale100kmaclrn
4.	(10	runs)	eth-l2bdscale1mmaclrn

Throughput:	2n-skx-xxv710-64b-2t1c-l2switching-base-scale-dpdk-pdr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

2.3. Packet Throughput 55

CSIT REPORT, Release rls19082

3n-skx-xxv710

64b-2t1c-l2switching-base-avf

1 2 3 4
0.00

5.00

10.0

15.0

20.0

25.0

1.	(02	runs)	avf-dot1q-l2bdbasemaclrn
2.	(00	run)	avf-eth-l2patch
3.	(02	runs)	avf-eth-l2xcbase
4.	(02	runs)	avf-eth-l2bdbasemaclrn

Throughput:	3n-skx-xxv710-64b-2t1c-l2switching-base-avf-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

56 Chapter 2. VPP Performance

CSIT REPORT, Release rls19082

1 2 3 4
0.00

5.00

10.0

15.0

20.0

25.0

30.0

1.	(02	runs)	avf-dot1q-l2bdbasemaclrn
2.	(00	run)	avf-eth-l2patch
3.	(02	runs)	avf-eth-l2xcbase
4.	(02	runs)	avf-eth-l2bdbasemaclrn

Throughput:	3n-skx-xxv710-64b-2t1c-l2switching-base-avf-pdr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

2.3. Packet Throughput 57

CSIT REPORT, Release rls19082

64b-2t1c-l2switching-base-dpdk

1 2 3 4
0.00

5.00

10.0

15.0

20.0

25.0

1.	(02	runs)	dot1q-l2xcbase
2.	(02	runs)	eth-l2xcbase
3.	(02	runs)	dot1q-l2bdbasemaclrn
4.	(02	runs)	eth-l2bdbasemaclrn

Throughput:	3n-skx-xxv710-64b-2t1c-l2switching-base-dpdk-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

58 Chapter 2. VPP Performance

CSIT REPORT, Release rls19082

1 2 3 4
0.00

5.00

10.0

15.0

20.0

25.0

1.	(02	runs)	dot1q-l2xcbase
2.	(02	runs)	eth-l2xcbase
3.	(02	runs)	dot1q-l2bdbasemaclrn
4.	(02	runs)	eth-l2bdbasemaclrn

Throughput:	3n-skx-xxv710-64b-2t1c-l2switching-base-dpdk-pdr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

2.3. Packet Throughput 59

CSIT REPORT, Release rls19082

64b-2t1c-l2switching-base-scale-avf

2 3
0.00

5.00

10.0

15.0

20.0

25.0

1.	(00	run)	avf-eth-l2patch
2.	(02	runs)	avf-eth-l2xcbase
3.	(02	runs)	avf-eth-l2bdbasemaclrn

Throughput:	3n-skx-xxv710-64b-2t1c-l2switching-base-scale-avf-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

60 Chapter 2. VPP Performance

CSIT REPORT, Release rls19082

2 3
0.00

5.00

10.0

15.0

20.0

25.0

30.0

1.	(00	run)	avf-eth-l2patch
2.	(02	runs)	avf-eth-l2xcbase
3.	(02	runs)	avf-eth-l2bdbasemaclrn

Throughput:	3n-skx-xxv710-64b-2t1c-l2switching-base-scale-avf-pdr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

2.3. Packet Throughput 61

CSIT REPORT, Release rls19082

64b-2t1c-l2switching-base-scale-dpdk

2 3 4 5 6
0.00

5.00

10.0

15.0

20.0

25.0

1.	(00	run)	eth-l2patch
2.	(02	runs)	eth-l2xcbase
3.	(02	runs)	eth-l2bdbasemaclrn
4.	(02	runs)	eth-l2bdscale10kmaclrn
5.	(02	runs)	eth-l2bdscale100kmaclrn
6.	(02	runs)	eth-l2bdscale1mmaclrn

Throughput:	3n-skx-xxv710-64b-2t1c-l2switching-base-scale-dpdk-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

62 Chapter 2. VPP Performance

CSIT REPORT, Release rls19082

2 3 4 5 6
0.00

5.00

10.0

15.0

20.0

25.0

1.	(00	run)	eth-l2patch
2.	(02	runs)	eth-l2xcbase
3.	(02	runs)	eth-l2bdbasemaclrn
4.	(02	runs)	eth-l2bdscale10kmaclrn
5.	(02	runs)	eth-l2bdscale100kmaclrn
6.	(02	runs)	eth-l2bdscale1mmaclrn

Throughput:	3n-skx-xxv710-64b-2t1c-l2switching-base-scale-dpdk-pdr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

2.3. Packet Throughput 63

CSIT REPORT, Release rls19082

64b-2t1c-features-l2switching-base-dpdk

1 2 3 4 5 6
0.00

2.00

4.00

6.00

8.00

10.0

12.0

14.0

16.0

18.0

1.	(02	runs)	eth-l2bdbasemaclrn
2.	(02	runs)	eth-l2bdbasemaclrn-iacl50sf-10kflows
3.	(02	runs)	eth-l2bdbasemaclrn-iacl50sl-10kflows
4.	(02	runs)	eth-l2bdbasemaclrn-oacl50sf-10kflows
5.	(02	runs)	eth-l2bdbasemaclrn-oacl50sl-10kflows
6.	(02	runs)	eth-l2bdbasemaclrn-macip-iacl50sl-10kflows

Throughput:	3n-skx-xxv710-64b-2t1c-features-l2switching-base-dpdk-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

64 Chapter 2. VPP Performance

CSIT REPORT, Release rls19082

1 2 3 4 5 6
0.00

2.00

4.00

6.00

8.00

10.0

12.0

14.0

16.0

18.0

1.	(02	runs)	eth-l2bdbasemaclrn
2.	(02	runs)	eth-l2bdbasemaclrn-iacl50sf-10kflows
3.	(02	runs)	eth-l2bdbasemaclrn-iacl50sl-10kflows
4.	(02	runs)	eth-l2bdbasemaclrn-oacl50sf-10kflows
5.	(02	runs)	eth-l2bdbasemaclrn-oacl50sl-10kflows
6.	(02	runs)	eth-l2bdbasemaclrn-macip-iacl50sl-10kflows

Throughput:	3n-skx-xxv710-64b-2t1c-features-l2switching-base-dpdk-pdr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

2.3. Packet Throughput 65

CSIT REPORT, Release rls19082

2n-clx-xxv710

64b-2t1c-l2switching-base-avf

1 2 3 4 5
0.00

5.00

10.0

15.0

20.0

25.0

30.0

1.	(05	runs)	avf-dot1q-l2bdbasemaclrn
2.	(05	runs)	avf-dot1q-l2bdbasemaclrn-gbp
3.	(00	run)	avf-eth-l2patch
4.	(05	runs)	avf-eth-l2xcbase
5.	(05	runs)	avf-eth-l2bdbasemaclrn

Throughput:	2n-clx-xxv710-64b-2t1c-l2switching-base-avf-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

66 Chapter 2. VPP Performance

CSIT REPORT, Release rls19082

1 2 3 4 5
0.00

5.00

10.0

15.0

20.0

25.0

30.0

35.0

1.	(05	runs)	avf-dot1q-l2bdbasemaclrn
2.	(05	runs)	avf-dot1q-l2bdbasemaclrn-gbp
3.	(00	run)	avf-eth-l2patch
4.	(05	runs)	avf-eth-l2xcbase
5.	(05	runs)	avf-eth-l2bdbasemaclrn

Throughput:	2n-clx-xxv710-64b-2t1c-l2switching-base-avf-pdr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

2.3. Packet Throughput 67

CSIT REPORT, Release rls19082

64b-2t1c-l2switching-base-dpdk

1 2 3 4 5
0.00

5.00

10.0

15.0

20.0

25.0

1.	(05	runs)	dot1q-l2xcbase
2.	(05	runs)	dot1q-l2bdbasemaclrn
3.	(00	run)	eth-l2patch
4.	(05	runs)	eth-l2xcbase
5.	(05	runs)	eth-l2bdbasemaclrn

Throughput:	2n-clx-xxv710-64b-2t1c-l2switching-base-dpdk-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

68 Chapter 2. VPP Performance

CSIT REPORT, Release rls19082

1 2 3 4 5
0.00

5.00

10.0

15.0

20.0

25.0

1.	(05	runs)	dot1q-l2xcbase
2.	(05	runs)	dot1q-l2bdbasemaclrn
3.	(00	run)	eth-l2patch
4.	(05	runs)	eth-l2xcbase
5.	(05	runs)	eth-l2bdbasemaclrn

Throughput:	2n-clx-xxv710-64b-2t1c-l2switching-base-dpdk-pdr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

2.3. Packet Throughput 69

CSIT REPORT, Release rls19082

64b-2t1c-l2switching-base-scale-dpdk

1 2 3 4
0.00

2.00

4.00

6.00

8.00

10.0

12.0

14.0

16.0

18.0

1.	(05	runs)	eth-l2bdbasemaclrn
2.	(05	runs)	eth-l2bdscale10kmaclrn
3.	(05	runs)	eth-l2bdscale100kmaclrn
4.	(05	runs)	eth-l2bdscale1mmaclrn

Throughput:	2n-clx-xxv710-64b-2t1c-l2switching-base-scale-dpdk-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

70 Chapter 2. VPP Performance

CSIT REPORT, Release rls19082

1 2 3 4
0.00

2.00

4.00

6.00

8.00

10.0

12.0

14.0

16.0

18.0

1.	(05	runs)	eth-l2bdbasemaclrn
2.	(05	runs)	eth-l2bdscale10kmaclrn
3.	(05	runs)	eth-l2bdscale100kmaclrn
4.	(05	runs)	eth-l2bdscale1mmaclrn

Throughput:	2n-clx-xxv710-64b-2t1c-l2switching-base-scale-dpdk-pdr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

2.3. Packet Throughput 71

CSIT REPORT, Release rls19082

2.3.2 IPv4 Routing

Following sections include summary graphs of VPP Phy-to-Phy performance with IPv4 Routed-Forwarding, including NDR throughput (zero packet loss) and PDR throughput (<0.5% packet loss). Per-formance is reported for VPP running in multiple configurations of VPP worker thread(s), a.k.a. VPP dataplane thread(s), and their physical CPU core(s) placement.
CSIT source code for the test cases used for plots can be found in CSIT git repository42.

42 https://git.fd.io/csit/tree/tests/vpp/perf/ip4?h=rls1908_2

72 Chapter 2. VPP Performance

https://git.fd.io/csit/tree/tests/vpp/perf/ip4?h=rls1908_2

CSIT REPORT, Release rls19082

2n-skx-xxv710

64b-2t1c-ip4routing-base-scale-avf

1 2 3 4 5
0.00

5.00

10.0

15.0

20.0

1.	(10	runs)	avf-dot1q-ip4base
2.	(10	runs)	avf-ethip4-ip4base
3.	(10	runs)	avf-ethip4-ip4scale20k
4.	(10	runs)	avf-ethip4-ip4scale200k
5.	(10	runs)	avf-ethip4-ip4scale2m

Throughput:	2n-skx-xxv710-64b-2t1c-ip4routing-base-scale-avf-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

2.3. Packet Throughput 73

CSIT REPORT, Release rls19082

1 2 3 4 5
0.00

5.00

10.0

15.0

20.0

1.	(10	runs)	avf-dot1q-ip4base
2.	(10	runs)	avf-ethip4-ip4base
3.	(10	runs)	avf-ethip4-ip4scale20k
4.	(10	runs)	avf-ethip4-ip4scale200k
5.	(10	runs)	avf-ethip4-ip4scale2m

Throughput:	2n-skx-xxv710-64b-2t1c-ip4routing-base-scale-avf-pdr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

74 Chapter 2. VPP Performance

CSIT REPORT, Release rls19082

64b-2t1c-ip4routing-base-scale-dpdk

1 2 3 4 5
0.00

2.00

4.00

6.00

8.00

10.0

12.0

14.0

16.0

18.0

1.	(10	runs)	dot1q-ip4base 2.	(10	runs)	ethip4-ip4base
3.	(10	runs)	ethip4-ip4scale20k 4.	(10	runs)	ethip4-ip4scale200k
5.	(10	runs)	ethip4-ip4scale2m

Throughput:	2n-skx-xxv710-64b-2t1c-ip4routing-base-scale-dpdk-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

2.3. Packet Throughput 75

CSIT REPORT, Release rls19082

1 2 3 4 5
0.00

5.00

10.0

15.0

20.0

1.	(10	runs)	dot1q-ip4base 2.	(10	runs)	ethip4-ip4base
3.	(10	runs)	ethip4-ip4scale20k 4.	(10	runs)	ethip4-ip4scale200k
5.	(10	runs)	ethip4-ip4scale2m

Throughput:	2n-skx-xxv710-64b-2t1c-ip4routing-base-scale-dpdk-pdr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

76 Chapter 2. VPP Performance

CSIT REPORT, Release rls19082

64b-2t1c-features-ip4routing-base-dpdk

1 2 3 4 5 6
0.00

2.00

4.00

6.00

8.00

10.0

12.0

14.0

16.0

18.0

1.	(10	runs)	ethip4-ip4base
2.	(10	runs)	ethip4udp-ip4base-iacl50sf-10kflows
3.	(10	runs)	ethip4udp-ip4base-iacl50sl-10kflows
4.	(10	runs)	ethip4udp-ip4base-oacl50sf-10kflows
5.	(10	runs)	ethip4udp-ip4base-oacl50sl-10kflows
6.	(10	runs)	ethip4udp-ip4base-nat44

Throughput:	2n-skx-xxv710-64b-2t1c-features-ip4routing-base-dpdk-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

2.3. Packet Throughput 77

CSIT REPORT, Release rls19082

1 2 3 4 5 6
0.00

5.00

10.0

15.0

20.0

1.	(10	runs)	ethip4-ip4base
2.	(10	runs)	ethip4udp-ip4base-iacl50sf-10kflows
3.	(10	runs)	ethip4udp-ip4base-iacl50sl-10kflows
4.	(10	runs)	ethip4udp-ip4base-oacl50sf-10kflows
5.	(10	runs)	ethip4udp-ip4base-oacl50sl-10kflows
6.	(10	runs)	ethip4udp-ip4base-nat44

Throughput:	2n-skx-xxv710-64b-2t1c-features-ip4routing-base-dpdk-pdr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

78 Chapter 2. VPP Performance

CSIT REPORT, Release rls19082

3n-skx-xxv710

64b-2t1c-ip4routing-base-scale-avf

1 2 3 4 5
0.00

5.00

10.0

15.0

20.0

1.	(02	runs)	avf-dot1q-ip4base
2.	(02	runs)	avf-eth-ip4base
3.	(02	runs)	avf-ethip4-ip4scale20k
4.	(02	runs)	avf-ethip4-ip4scale200k
5.	(02	runs)	avf-ethip4-ip4scale2m

Throughput:	3n-skx-xxv710-64b-2t1c-ip4routing-base-scale-avf-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

2.3. Packet Throughput 79

CSIT REPORT, Release rls19082

1 2 3 4 5
0.00

5.00

10.0

15.0

20.0

25.0

1.	(02	runs)	avf-dot1q-ip4base
2.	(02	runs)	avf-eth-ip4base
3.	(02	runs)	avf-ethip4-ip4scale20k
4.	(02	runs)	avf-ethip4-ip4scale200k
5.	(02	runs)	avf-ethip4-ip4scale2m

Throughput:	3n-skx-xxv710-64b-2t1c-ip4routing-base-scale-avf-pdr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

80 Chapter 2. VPP Performance

CSIT REPORT, Release rls19082

64b-2t1c-ip4routing-base-scale-dpdk

1 2 3 4 5
0.00

2.00

4.00

6.00

8.00

10.0

12.0

14.0

16.0

18.0

1.	(02	runs)	dot1q-ip4base 2.	(02	runs)	ethip4-ip4base
3.	(02	runs)	ethip4-ip4scale20k 4.	(02	runs)	ethip4-ip4scale200k
5.	(02	runs)	ethip4-ip4scale2m

Throughput:	3n-skx-xxv710-64b-2t1c-ip4routing-base-scale-dpdk-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

2.3. Packet Throughput 81

CSIT REPORT, Release rls19082

1 2 3 4 5
0.00

5.00

10.0

15.0

20.0

1.	(02	runs)	dot1q-ip4base 2.	(02	runs)	ethip4-ip4base
3.	(02	runs)	ethip4-ip4scale20k 4.	(02	runs)	ethip4-ip4scale200k
5.	(02	runs)	ethip4-ip4scale2m

Throughput:	3n-skx-xxv710-64b-2t1c-ip4routing-base-scale-dpdk-pdr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

82 Chapter 2. VPP Performance

CSIT REPORT, Release rls19082

64b-2t1c-features-ip4routing-base-dpdk

1 2 3 4 5 6
0.00

2.00

4.00

6.00

8.00

10.0

12.0

14.0

16.0

18.0

1.	(02	runs)	ethip4-ip4base
2.	(02	runs)	ethip4udp-ip4base-iacl50sf-10kflows
3.	(02	runs)	ethip4udp-ip4base-iacl50sl-10kflows
4.	(02	runs)	ethip4udp-ip4base-oacl50sf-10kflows
5.	(02	runs)	ethip4udp-ip4base-oacl50sl-10kflows
6.	(02	runs)	ethip4udp-ip4base-nat44

Throughput:	3n-skx-xxv710-64b-2t1c-features-ip4routing-base-dpdk-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

2.3. Packet Throughput 83

CSIT REPORT, Release rls19082

1 2 3 4 5 6
0.00

5.00

10.0

15.0

20.0

1.	(02	runs)	ethip4-ip4base
2.	(02	runs)	ethip4udp-ip4base-iacl50sf-10kflows
3.	(02	runs)	ethip4udp-ip4base-iacl50sl-10kflows
4.	(02	runs)	ethip4udp-ip4base-oacl50sf-10kflows
5.	(02	runs)	ethip4udp-ip4base-oacl50sl-10kflows
6.	(02	runs)	ethip4udp-ip4base-nat44

Throughput:	3n-skx-xxv710-64b-2t1c-features-ip4routing-base-dpdk-pdr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

84 Chapter 2. VPP Performance

CSIT REPORT, Release rls19082

2n-clx-xxv710

64b-2t1c-ip4routing-base-scale-avf

1 2 3 4
0.00

5.00

10.0

15.0

20.0

1.	(05	runs)	avf-ethip4-ip4base
2.	(05	runs)	avf-ethip4-ip4scale20k
3.	(05	runs)	avf-ethip4-ip4scale200k
4.	(05	runs)	avf-ethip4-ip4scale2m

Throughput:	2n-clx-xxv710-64b-2t1c-ip4routing-base-scale-avf-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

2.3. Packet Throughput 85

CSIT REPORT, Release rls19082

1 2 3 4
0.00

5.00

10.0

15.0

20.0

1.	(05	runs)	avf-ethip4-ip4base
2.	(05	runs)	avf-ethip4-ip4scale20k
3.	(05	runs)	avf-ethip4-ip4scale200k
4.	(05	runs)	avf-ethip4-ip4scale2m

Throughput:	2n-clx-xxv710-64b-2t1c-ip4routing-base-scale-avf-pdr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

86 Chapter 2. VPP Performance

CSIT REPORT, Release rls19082

64b-2t1c-ip4routing-base-scale-dpdk

1 2 3 4 5
0.00

2.00

4.00

6.00

8.00

10.0

12.0

14.0

16.0

18.0

1.	(05	runs)	dot1q-ip4base 2.	(05	runs)	ethip4-ip4base
3.	(05	runs)	ethip4-ip4scale20k 4.	(05	runs)	ethip4-ip4scale200k
5.	(05	runs)	ethip4-ip4scale2m

Throughput:	2n-clx-xxv710-64b-2t1c-ip4routing-base-scale-dpdk-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

2.3. Packet Throughput 87

CSIT REPORT, Release rls19082

1 2 3 4 5
0.00

2.00

4.00

6.00

8.00

10.0

12.0

14.0

16.0

18.0

1.	(05	runs)	dot1q-ip4base 2.	(05	runs)	ethip4-ip4base
3.	(05	runs)	ethip4-ip4scale20k 4.	(05	runs)	ethip4-ip4scale200k
5.	(05	runs)	ethip4-ip4scale2m

Throughput:	2n-clx-xxv710-64b-2t1c-ip4routing-base-scale-dpdk-pdr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

88 Chapter 2. VPP Performance

CSIT REPORT, Release rls19082

64b-2t1c-features-ip4routing-base-dpdk

1 2 3 4 5 6
0.00

2.00

4.00

6.00

8.00

10.0

12.0

14.0

16.0

18.0

1.	(05	runs)	ethip4-ip4base
2.	(05	runs)	ethip4udp-ip4base-iacl50sf-10kflows
3.	(05	runs)	ethip4udp-ip4base-iacl50sl-10kflows
4.	(05	runs)	ethip4udp-ip4base-oacl50sf-10kflows
5.	(05	runs)	ethip4udp-ip4base-oacl50sl-10kflows
6.	(05	runs)	ethip4udp-ip4base-nat44

Throughput:	2n-clx-xxv710-64b-2t1c-features-ip4routing-base-dpdk-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

2.3. Packet Throughput 89

CSIT REPORT, Release rls19082

1 2 3 4 5 6
0.00

2.00

4.00

6.00

8.00

10.0

12.0

14.0

16.0

18.0

1.	(05	runs)	ethip4-ip4base
2.	(05	runs)	ethip4udp-ip4base-iacl50sf-10kflows
3.	(05	runs)	ethip4udp-ip4base-iacl50sl-10kflows
4.	(05	runs)	ethip4udp-ip4base-oacl50sf-10kflows
5.	(05	runs)	ethip4udp-ip4base-oacl50sl-10kflows
6.	(05	runs)	ethip4udp-ip4base-nat44

Throughput:	2n-clx-xxv710-64b-2t1c-features-ip4routing-base-dpdk-pdr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

90 Chapter 2. VPP Performance

CSIT REPORT, Release rls19082

2.3.3 IPv4 Tunnels

Following sections include summary graphs of VPP Phy-to-Phy performance with IPv4 Overlay Tunnels,including NDR throughput (zero packet loss) and PDR throughput (<0.5% packet loss). Performance is re-ported for VPP running in multiple configurations of VPPworker thread(s), a.k.a. VPP data plane thread(s),and their physical CPU core(s) placement.
CSIT source code for the test cases used for plots can be found in CSIT git repository43.

43 https://git.fd.io/csit/tree/tests/vpp/perf/ip4_tunnels?h=rls1908_2

2.3. Packet Throughput 91

https://git.fd.io/csit/tree/tests/vpp/perf/ip4_tunnels?h=rls1908_2

CSIT REPORT, Release rls19082

3n-skx-xxv710

64b-2t1c-ip4tunnel-base-scale-dpdk

1 2 3 4
0.00

2.00

4.00

6.00

8.00

10.0

12.0

1.	(02	runs)	ethip4vxlan-l2xcbase
2.	(02	runs)	ethip4vxlan-l2bdbasemaclrn
3.	(02	runs)	dot1q--ethip4vxlan-l2bdscale1l2bd1vlan1vxlan
4.	(02	runs)	dot1q--ethip4vxlan-l2bdscale100l2bd100vlan100vxlan

Throughput:	3n-skx-xxv710-64b-2t1c-ip4tunnel-base-scale-dpdk-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

92 Chapter 2. VPP Performance

CSIT REPORT, Release rls19082

1 2 3 4
0.00

2.00

4.00

6.00

8.00

10.0

12.0

1.	(02	runs)	ethip4vxlan-l2xcbase
2.	(02	runs)	ethip4vxlan-l2bdbasemaclrn
3.	(02	runs)	dot1q--ethip4vxlan-l2bdscale1l2bd1vlan1vxlan
4.	(02	runs)	dot1q--ethip4vxlan-l2bdscale100l2bd100vlan100vxlan

Throughput:	3n-skx-xxv710-64b-2t1c-ip4tunnel-base-scale-dpdk-pdr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

2.3. Packet Throughput 93

CSIT REPORT, Release rls19082

2.3.4 KVM VMs vhost-user

Following sections include summary graphs of VPP Phy-to-VM(s)-to-Phy performance with VM virtioand VPP vhost-user virtual interfaces, including NDR throughput (zero packet loss) and PDR throughput(<0.5% packet loss). Performance is reported for VPP running in multiple configurations of VPP workerthread(s), a.k.a. VPP data plane thread(s), and their physical CPU core(s) placement.
CSIT source code for the test cases used for plots can be found in CSIT git repository44.

44 https://git.fd.io/csit/tree/tests/vpp/perf/vm_vhost?h=rls1908_2

94 Chapter 2. VPP Performance

https://git.fd.io/csit/tree/tests/vpp/perf/vm_vhost?h=rls1908_2

CSIT REPORT, Release rls19082

2n-skx-xxv710

64b-2t1c-vhost-base-dpdk-testpmd

1 2 3 4
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

1.	(10	runs)	eth-l2xcbase-eth-2vhostvr1024-1vm
2.	(10	runs)	dot1q-l2bdbasemaclrn-eth-2vhostvr1024-1vm
3.	(10	runs)	eth-l2bdbasemaclrn-eth-2vhostvr1024-1vm
4.	(10	runs)	ethip4-ip4base-eth-2vhostvr1024-1vm

Throughput:	2n-skx-xxv710-64b-2t1c-vhost-base-dpdk-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

2.3. Packet Throughput 95

CSIT REPORT, Release rls19082

1 2 3 4
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

1.	(10	runs)	eth-l2xcbase-eth-2vhostvr1024-1vm
2.	(10	runs)	dot1q-l2bdbasemaclrn-eth-2vhostvr1024-1vm
3.	(10	runs)	eth-l2bdbasemaclrn-eth-2vhostvr1024-1vm
4.	(10	runs)	ethip4-ip4base-eth-2vhostvr1024-1vm

Throughput:	2n-skx-xxv710-64b-2t1c-vhost-base-dpdk-pdr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

96 Chapter 2. VPP Performance

CSIT REPORT, Release rls19082

64b-2t1c-vhost-base-dpdk-vpp

1 2 3 4
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

1.	(10	runs)	eth-l2xcbase-eth-2vhostvr1024-1vm-vppl2xc
2.	(10	runs)	dot1q-l2bdbasemaclrn-eth-2vhostvr1024-1vm-vppl2xc
3.	(09	runs)	eth-l2bdbasemaclrn-eth-2vhostvr1024-1vm-vppl2xc
4.	(10	runs)	ethip4-ip4base-eth-2vhostvr1024-1vm-vppip4

Throughput:	2n-skx-xxv710-64b-2t1c-vhost-base-dpdk-vpp-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

2.3. Packet Throughput 97

CSIT REPORT, Release rls19082

1 2 3 4
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

1.	(10	runs)	eth-l2xcbase-eth-2vhostvr1024-1vm-vppl2xc
2.	(10	runs)	dot1q-l2bdbasemaclrn-eth-2vhostvr1024-1vm-vppl2xc
3.	(09	runs)	eth-l2bdbasemaclrn-eth-2vhostvr1024-1vm-vppl2xc
4.	(10	runs)	ethip4-ip4base-eth-2vhostvr1024-1vm-vppip4

Throughput:	2n-skx-xxv710-64b-2t1c-vhost-base-dpdk-vpp-pdr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

98 Chapter 2. VPP Performance

CSIT REPORT, Release rls19082

3n-skx-xxv710

64b-2t1c-vhost-base-avf-testpmd

64b-2t1c-vhost-base-dpdk-testpmd

1 2 3 4 5 6
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

1.	(02	runs)	dot1q-l2xcbase-eth-2vhostvr1024-1vm
2.	(02	runs)	eth-l2xcbase-eth-2vhostvr1024-1vm
3.	(02	runs)	dot1q-l2bdbasemaclrn-eth-2vhostvr1024-1vm
4.	(02	runs)	eth-l2bdbasemaclrn-eth-2vhostvr1024-1vm
5.	(02	runs)	ethip4-ip4base-eth-2vhostvr1024-1vm
6.	(02	runs)	ethip4vxlan-l2bdbasemaclrn-eth-2vhostvr1024-1vm

Throughput:	3n-skx-xxv710-64b-2t1c-vhost-base-dpdk-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

2.3. Packet Throughput 99

CSIT REPORT, Release rls19082

1 2 3 4 5 6
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

1.	(02	runs)	dot1q-l2xcbase-eth-2vhostvr1024-1vm
2.	(02	runs)	eth-l2xcbase-eth-2vhostvr1024-1vm
3.	(02	runs)	dot1q-l2bdbasemaclrn-eth-2vhostvr1024-1vm
4.	(02	runs)	eth-l2bdbasemaclrn-eth-2vhostvr1024-1vm
5.	(02	runs)	ethip4-ip4base-eth-2vhostvr1024-1vm
6.	(02	runs)	ethip4vxlan-l2bdbasemaclrn-eth-2vhostvr1024-1vm

Throughput:	3n-skx-xxv710-64b-2t1c-vhost-base-dpdk-pdr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

100 Chapter 2. VPP Performance

CSIT REPORT, Release rls19082

64b-2t1c-vhost-base-dpdk-vpp

1 2 3 4 5
0.00

1.00

2.00

3.00

4.00

5.00

1.	(02	runs)	dot1q-l2xcbase-eth-2vhostvr1024-1vm-vppl2xc
2.	(02	runs)	eth-l2xcbase-eth-2vhostvr1024-1vm-vppl2xc
3.	(02	runs)	dot1q-l2bdbasemaclrn-eth-2vhostvr1024-1vm-vppl2xc
4.	(02	runs)	eth-l2bdbasemaclrn-eth-2vhostvr1024-1vm-vppl2xc
5.	(02	runs)	ethip4-ip4base-eth-2vhostvr1024-1vm-vppip4

Throughput:	3n-skx-xxv710-64b-2t1c-vhost-base-dpdk-vpp-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

2.3. Packet Throughput 101

CSIT REPORT, Release rls19082

1 2 3 4 5
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

1.	(02	runs)	dot1q-l2xcbase-eth-2vhostvr1024-1vm-vppl2xc
2.	(02	runs)	eth-l2xcbase-eth-2vhostvr1024-1vm-vppl2xc
3.	(02	runs)	dot1q-l2bdbasemaclrn-eth-2vhostvr1024-1vm-vppl2xc
4.	(02	runs)	eth-l2bdbasemaclrn-eth-2vhostvr1024-1vm-vppl2xc
5.	(02	runs)	ethip4-ip4base-eth-2vhostvr1024-1vm-vppip4

Throughput:	3n-skx-xxv710-64b-2t1c-vhost-base-dpdk-vpp-pdr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

102 Chapter 2. VPP Performance

CSIT REPORT, Release rls19082

64b-2t1c-link-bonding-vhost-base-dpdk-testpmd

1 2
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

1.	(02	runs)	1lbvpplacp-dot1q-l2xcbase-eth-2vhostvr1024-1vm
2.	(02	runs)	1lbvpplacp-dot1q-l2bdbasemaclrn-eth-2vhostvr1024-1vm

Throughput:	3n-skx-xxv710-64b-2t1c-link-bonding-vhost-base-dpdk-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

2.3. Packet Throughput 103

CSIT REPORT, Release rls19082

1 2
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

1.	(02	runs)	1lbvpplacp-dot1q-l2xcbase-eth-2vhostvr1024-1vm
2.	(02	runs)	1lbvpplacp-dot1q-l2bdbasemaclrn-eth-2vhostvr1024-1vm

Throughput:	3n-skx-xxv710-64b-2t1c-link-bonding-vhost-base-dpdk-pdr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

104 Chapter 2. VPP Performance

CSIT REPORT, Release rls19082

64b-2t1c-link-bonding-vhost-base-dpdk-vpp

1 2
0.00

0.500

1.00

1.50

2.00

2.50

3.00

3.50

4.00

1.	(02	runs)	1lbvpplacp-dot1q-l2xcbase-eth-2vhostvr1024-1vm-vppl2xc
2.	(02	runs)	1lbvpplacp-dot1q-l2bdbasemaclrn-eth-2vhostvr1024-1vm-vppl2xc

Throughput:	3n-skx-xxv710-64b-2t1c-link-bonding-vhost-base-dpdk-vpp-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

2.3. Packet Throughput 105

CSIT REPORT, Release rls19082

106 Chapter 2. VPP Performance

CSIT REPORT, Release rls19082

2n-clx-xxv710

64b-2t1c-vhost-base-dpdk-testpmd

1 2 3 4
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

1.	(04	runs)	dot1q-l2bdbasemaclrn-eth-2vhostvr1024-1vm
2.	(04	runs)	eth-l2xcbase-eth-2vhostvr1024-1vm
3.	(04	runs)	eth-l2bdbasemaclrn-eth-2vhostvr1024-1vm
4.	(04	runs)	ethip4-ip4base-eth-2vhostvr1024-1vm

Throughput:	2n-clx-xxv710-64b-2t1c-vhost-base-dpdk-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

2.3. Packet Throughput 107

CSIT REPORT, Release rls19082

1 2 3 4
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

1.	(04	runs)	dot1q-l2bdbasemaclrn-eth-2vhostvr1024-1vm
2.	(04	runs)	eth-l2xcbase-eth-2vhostvr1024-1vm
3.	(04	runs)	eth-l2bdbasemaclrn-eth-2vhostvr1024-1vm
4.	(04	runs)	ethip4-ip4base-eth-2vhostvr1024-1vm

Throughput:	2n-clx-xxv710-64b-2t1c-vhost-base-dpdk-pdr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

108 Chapter 2. VPP Performance

CSIT REPORT, Release rls19082

64b-2t1c-vhost-base-dpdk-vpp

1 2 3 4
0.00

1.00

2.00

3.00

4.00

5.00

6.00

1.	(04	runs)	dot1q-l2bdbasemaclrn-eth-2vhostvr1024-1vm-vppl2xc
2.	(04	runs)	eth-l2xcbase-eth-2vhostvr1024-1vm-vppl2xc
3.	(04	runs)	eth-l2bdbasemaclrn-eth-2vhostvr1024-1vm-vppl2xc
4.	(04	runs)	ethip4-ip4base-eth-2vhostvr1024-1vm-vppip4

Throughput:	2n-clx-xxv710-64b-2t1c-vhost-base-dpdk-vpp-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

2.3. Packet Throughput 109

CSIT REPORT, Release rls19082

1 2 3 4
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

1.	(04	runs)	dot1q-l2bdbasemaclrn-eth-2vhostvr1024-1vm-vppl2xc
2.	(04	runs)	eth-l2xcbase-eth-2vhostvr1024-1vm-vppl2xc
3.	(04	runs)	eth-l2bdbasemaclrn-eth-2vhostvr1024-1vm-vppl2xc
4.	(04	runs)	ethip4-ip4base-eth-2vhostvr1024-1vm-vppip4

Throughput:	2n-clx-xxv710-64b-2t1c-vhost-base-dpdk-vpp-pdr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

110 Chapter 2. VPP Performance

CSIT REPORT, Release rls19082

2.3.5 LXC/DRC Container Memif

Following sections include summary graphs of VPP Phy-to-Phy performance with Container memif Con-nections, including NDR throughput (zero packet loss) and PDR throughput (<0.5% packet loss). Perfor-mance is reported for VPP running in multiple configurations of VPP worker thread(s), a.k.a. VPP dataplane thread(s), and their physical CPU core(s) placement.
CSIT source code for the test cases used for plots can be found in CSIT git repository45.

45 https://git.fd.io/csit/tree/tests/vpp/perf/container_memif?h=rls1908_2

2.3. Packet Throughput 111

https://git.fd.io/csit/tree/tests/vpp/perf/container_memif?h=rls1908_2

CSIT REPORT, Release rls19082

2n-skx-xxv710

64b-2t1c-memif-base-dpdk

1 2 3 4
0.00

2.00

4.00

6.00

8.00

10.0

12.0

1.	(10	runs)	eth-l2xcbase-eth-2memif-1dcr
2.	(10	runs)	dot1q-l2bdbasemaclrn-eth-2memif-1dcr
3.	(10	runs)	eth-l2bdbasemaclrn-eth-2memif-1dcr
4.	(10	runs)	ethip4-ip4base-eth-2memif-1dcr

Throughput:	2n-skx-xxv710-64b-2t1c-memif-base-dpdk-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

112 Chapter 2. VPP Performance

CSIT REPORT, Release rls19082

1 2 3 4
0.00

2.00

4.00

6.00

8.00

10.0

12.0

1.	(10	runs)	eth-l2xcbase-eth-2memif-1dcr
2.	(10	runs)	dot1q-l2bdbasemaclrn-eth-2memif-1dcr
3.	(10	runs)	eth-l2bdbasemaclrn-eth-2memif-1dcr
4.	(10	runs)	ethip4-ip4base-eth-2memif-1dcr

Throughput:	2n-skx-xxv710-64b-2t1c-memif-base-dpdk-pdr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

2.3. Packet Throughput 113

CSIT REPORT, Release rls19082

3n-skx-xxv710

64b-2t1c-memif-base-dpdk

1 2 3 4 5
0.00

2.00

4.00

6.00

8.00

10.0

12.0

1.	(02	runs)	eth-l2xcbase-eth-2memif-1dcr
2.	(02	runs)	eth-l2xcbase-eth-2memif-1lxc
3.	(02	runs)	dot1q-l2bdbasemaclrn-eth-2memif-1dcr
4.	(02	runs)	eth-l2bdbasemaclrn-eth-2memif-1lxc
5.	(02	runs)	ethip4-ip4base-eth-2memif-1dcr

Throughput:	3n-skx-xxv710-64b-2t1c-memif-base-dpdk-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

114 Chapter 2. VPP Performance

CSIT REPORT, Release rls19082

1 2 3 4 5
0.00

2.00

4.00

6.00

8.00

10.0

12.0

14.0

1.	(02	runs)	eth-l2xcbase-eth-2memif-1dcr
2.	(02	runs)	eth-l2xcbase-eth-2memif-1lxc
3.	(02	runs)	dot1q-l2bdbasemaclrn-eth-2memif-1dcr
4.	(02	runs)	eth-l2bdbasemaclrn-eth-2memif-1lxc
5.	(02	runs)	ethip4-ip4base-eth-2memif-1dcr

Throughput:	3n-skx-xxv710-64b-2t1c-memif-base-dpdk-pdr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

2.3. Packet Throughput 115

CSIT REPORT, Release rls19082

2n-clx-xxv710

64b-2t1c-memif-base-dpdk

1 2 3 4
0.00

2.00

4.00

6.00

8.00

10.0

12.0

1.	(05	runs)	eth-l2xcbase-eth-2memif-1dcr
2.	(05	runs)	dot1q-l2bdbasemaclrn-eth-2memif-1dcr
3.	(05	runs)	eth-l2bdbasemaclrn-eth-2memif-1dcr
4.	(05	runs)	ethip4-ip4base-eth-2memif-1dcr

Throughput:	2n-clx-xxv710-64b-2t1c-memif-base-dpdk-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

116 Chapter 2. VPP Performance

CSIT REPORT, Release rls19082

1 2 3 4
0.00

2.00

4.00

6.00

8.00

10.0

12.0

1.	(05	runs)	eth-l2xcbase-eth-2memif-1dcr
2.	(05	runs)	dot1q-l2bdbasemaclrn-eth-2memif-1dcr
3.	(05	runs)	eth-l2bdbasemaclrn-eth-2memif-1dcr
4.	(05	runs)	ethip4-ip4base-eth-2memif-1dcr

Throughput:	2n-clx-xxv710-64b-2t1c-memif-base-dpdk-pdr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

2.3. Packet Throughput 117

CSIT REPORT, Release rls19082

2.3.6 IPSec IPv4 Routing

Following sections include summary graphs of VPP Phy-to-Phy performance with IPSec encryption usedin combination with IPv4 routed-forwarding, including NDR throughput (zero packet loss) and PDRthroughput (<0.5% packet loss). VPP IPSec encryption is accelerated using DPDK cryptodev library driv-ing Intel Quick Assist (QAT) crypto PCIe hardware cards. Performance is reported for VPP running inmultiple configurations of VPP worker thread(s), a.k.a. VPP data plane thread(s), and their physical CPUcore(s) placement.
CSIT source code for the test cases used for plots can be found in CSIT git repository46.

46 https://git.fd.io/csit/tree/tests/vpp/perf/crypto?h=rls1908_2

118 Chapter 2. VPP Performance

https://git.fd.io/csit/tree/tests/vpp/perf/crypto?h=rls1908_2

CSIT REPORT, Release rls19082

3n-skx-xxv710

64b-2t1c-ipsec-ip4routing-base-scale-dpdk

1 2 3 4 5 6
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

1.	(02	runs)	ethip4ipsec4tnlsw-ip4base-int-aes256gcm
2.	(02	runs)	ethip4ipsec4tnlsw-ip4base-int-aes128cbc-hmac512sha
3.	(02	runs)	ethip4ipsec1000tnlsw-ip4base-int-aes256gcm
4.	(02	runs)	ethip4ipsec1000tnlsw-ip4base-int-aes128cbc-hmac512sha
5.	(02	runs)	ethip4ipsec10000tnlsw-ip4base-int-aes256gcm
6.	(02	runs)	ethip4ipsec10000tnlsw-ip4base-int-aes128cbc-hmac512sha

Throughput:	3n-skx-xxv710-64b-2t1c-ipsec-ip4routing-base-scale-dpdk-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

2.3. Packet Throughput 119

CSIT REPORT, Release rls19082

1 2 3 4 5 6
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

1.	(02	runs)	ethip4ipsec4tnlsw-ip4base-int-aes256gcm
2.	(02	runs)	ethip4ipsec4tnlsw-ip4base-int-aes128cbc-hmac512sha
3.	(02	runs)	ethip4ipsec1000tnlsw-ip4base-int-aes256gcm
4.	(02	runs)	ethip4ipsec1000tnlsw-ip4base-int-aes128cbc-hmac512sha
5.	(02	runs)	ethip4ipsec10000tnlsw-ip4base-int-aes256gcm
6.	(02	runs)	ethip4ipsec10000tnlsw-ip4base-int-aes128cbc-hmac512sha

Throughput:	3n-skx-xxv710-64b-2t1c-ipsec-ip4routing-base-scale-dpdk-pdr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

120 Chapter 2. VPP Performance

CSIT REPORT, Release rls19082

2.4 Comparisons

2.4.1 Current vs. Previous Release

Relative comparison of VPP packet throughput (NDR, PDR and MRR) between VPP-19.08.2 release andVPP-19.08.1 release (measured for CSIT-1908.2 and CSIT-1908.1 respectively) is calculated from resultsof tests running on 2-node Intel Xeon Skylake (2n-skx), 3-node Intel Xeon Skylake (3n-skx), 3-Node IntelXeon Haswell (3n-hsw), 2-node Intel Atom Denverton (2n-dnv), 3-node Intel Atom Denverton (3n-dnv),3-node Arm TaiShan (3n-tsh) testbeds, in 1-core, 2-core and 4-core (MRR only) configurations.
Listed mean and standard deviation values are computed based on a series of the same tests executedagainst respective VPP releases to verify test results repeatability, with percentage change calculated formean values. Note that the standard deviation is quite high for a small number of packet throughput tests,what indicates poor test results repeatability and makes the relative change of mean throughput valuenot fully representative for these tests. The root causes behind poor results repeatability vary betweenthe test cases.
Note: Test results have been generated by

• FD.io test executor vpp performance job 2n-skx47,
• FD.io test executor vpp performance job 3n-skx48,
• FD.io test executor vpp performance job 2n-clx49

with RF result files csit-vpp-perf-1908_2-*.zip archived here.

2n-skx

NDR Comparison

Comparison tables in HTML, ASCII and CSV formats:
• HTML 2t1c NDR comparison
• ASCII 2t1c NDR comparison
• CSV 2t1c NDR comparison

PDR Comparison

Comparison tables in HTML, ASCII and CSV formats:
• HTML 2t1c PDR comparison
• ASCII 2t1c PDR comparison
• CSV 2t1c PDR comparison

3n-skx

NDR Comparison

Comparison tables in HTML, ASCII and CSV formats:
47 https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-1908_2-2n-skx48 https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-1908_2-3n-skx49 https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-1908_2-2n-clx

2.4. Comparisons 121

https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-1908_2-2n-skx
https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-1908_2-3n-skx
https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-1908_2-2n-clx
performance-changes-2n-skx-2t1c-ndr.html
../../_static/vpp/performance-changes-2n-skx-2t1c-ndr.txt
../../_static/vpp/performance-changes-2n-skx-2t1c-ndr.csv
performance-changes-2n-skx-2t1c-pdr.html
../../_static/vpp/performance-changes-2n-skx-2t1c-pdr.txt
../../_static/vpp/performance-changes-2n-skx-2t1c-pdr.csv

CSIT REPORT, Release rls19082

• HTML 2t1c NDR comparison
• ASCII 2t1c NDR comparison
• CSV 2t1c NDR comparison

PDR Comparison

Comparison tables in HTML, ASCII and CSV formats:
• HTML 2t1c PDR comparison
• ASCII 2t1c PDR comparison
• CSV 2t1c PDR comparison

2n-clx

NDR Comparison

Comparison tables in HTML, ASCII and CSV formats:
• HTML 2t1c NDR comparison
• ASCII 2t1c NDR comparison
• CSV 2t1c NDR comparison

PDR Comparison

Comparison tables in HTML, ASCII and CSV formats:
• HTML 2t1c PDR comparison
• ASCII 2t1c PDR comparison
• CSV 2t1c PDR comparison

2.4.2 2n-Skx vs. 2n-Clx Testbeds

Relative comparison of VPP-19.08.2 release packet throughput (NDR, PDR and MRR) is calculated forthe same tests executed on 2-Node Skylake (2n- skx) and 2-Node Cascade Lake (2n-clx) physical testbedtypes, in 1-core, 2-core and 4-core configurations.
Note: Test results have been generated by FD.io test executor vpp performance job 2n-skx50 and FD.iotest executor vpp performance job 2n-clx51 with RF result files csit-vpp-perf-1908_2-*.zip archived here.

NDR Comparison

Comparison tables in HTML, ASCII and CSV formats:
• HTML 1c NDR comparison
• ASCII 1c NDR comparison
• CSV 1c NDR comparison

50 https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-1908_2-2n-skx51 https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-1908_2-2n-clx

122 Chapter 2. VPP Performance

performance-changes-3n-skx-2t1c-ndr.html
../../_static/vpp/performance-changes-3n-skx-2t1c-ndr.txt
../../_static/vpp/performance-changes-3n-skx-2t1c-ndr.csv
performance-changes-3n-skx-2t1c-pdr.html
../../_static/vpp/performance-changes-3n-skx-2t1c-pdr.txt
../../_static/vpp/performance-changes-3n-skx-2t1c-pdr.csv
performance-changes-2n-clx-2t1c-ndr.html
../../_static/vpp/performance-changes-2n-clx-2t1c-ndr.txt
../../_static/vpp/performance-changes-2n-clx-2t1c-ndr.csv
performance-changes-2n-clx-2t1c-pdr.html
../../_static/vpp/performance-changes-2n-clx-2t1c-pdr.txt
../../_static/vpp/performance-changes-2n-clx-2t1c-pdr.csv
https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-1908_2-2n-skx
https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-1908_2-2n-clx
https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-1908_2-2n-clx
../../_static/vpp/performance-compare-testbeds-2n-skx-2n-clx-2t1c-ndr.html
../../_static/vpp/performance-compare-testbeds-2n-skx-2n-clx-2t1c-ndr.txt
../../_static/vpp/performance-compare-testbeds-2n-skx-2n-clx-2t1c-ndr.csv

CSIT REPORT, Release rls19082

PDR Comparison

Comparison tables in HTML, ASCII and CSV formats:
• HTML 1c PDR comparison
• ASCII 1c PDR comparison
• CSV 1c PDR comparison

2.4.3 3n-Skx vs. 2n-Skx Testbeds

Relative comparison of VPP-19.08.2 release packet throughput (NDR, PDR andMRR) is calculated for thesame tests executed on 3-Node Skylake (3n- skx) and 2-Node Skylake (2n-skx) physical testbed types, in1-core, 2-core and 4-core configurations.
Note: Test results have been generated by FD.io test executor vpp performance job 3n-skx52 and FD.iotest executor vpp performance job 2n-skx53 with RF result files csit-vpp-perf-1908_2-*.zip archived here.

NDR Comparison

Comparison tables in HTML, ASCII and CSV formats:
• HTML 1c NDR comparison
• ASCII 1c NDR comparison
• CSV 1c NDR comparison

PDR Comparison

Comparison tables in HTML, ASCII and CSV formats:
• HTML 1c PDR comparison
• ASCII 1c PDR comparison
• CSV 1c PDR comparison

2.5 Throughput Trending

In addition to reporting throughput comparison between VPP releases, CSIT provides continuous perfor-mance trending for VPP master branch:
1. Performance Dashboard54: per VPP test case throughput trend, trend compliance and summary ofdetected anomalies.
2. Trending Methodology55: throughput test metrics, trend calculations and anomaly classification(progression, regression).
3. VPP Trendline Graphs56: per VPP build MRR throughput measurements against the trendline withanomaly highlights and associated CSIT test jobs.

52 https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-1908_2-3n-skx53 https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-1908_2-2n-skx54 https://docs.fd.io/csit/master/trending/introduction/index.html55 https://docs.fd.io/csit/master/trending/methodology/index.html56 https://docs.fd.io/csit/master/trending/trending/index.html

2.5. Throughput Trending 123

../../_static/vpp/performance-compare-testbeds-2n-skx-2n-clx-2t1c-pdr.html
../../_static/vpp/performance-compare-testbeds-2n-skx-2n-clx-2t1c-pdr.txt
../../_static/vpp/performance-compare-testbeds-2n-skx-2n-clx-2t1c-pdr.csv
https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-1908_2-3n-skx
https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-1908_2-2n-skx
https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-1908_2-2n-skx
../../_static/vpp/performance-compare-topologies-3n-skx-2n-skx-1c-ndr.html
../../_static/vpp/performance-compare-topologies-3n-skx-2n-skx-1c-ndr.txt
../../_static/vpp/performance-compare-topologies-3n-skx-2n-skx-1c-ndr.csv
../../_static/vpp/performance-compare-topologies-3n-skx-2n-skx-1c-pdr.html
../../_static/vpp/performance-compare-topologies-3n-skx-2n-skx-1c-pdr.txt
../../_static/vpp/performance-compare-topologies-3n-skx-2n-skx-1c-pdr.csv
https://docs.fd.io/csit/master/trending/introduction/index.html
https://docs.fd.io/csit/master/trending/methodology/index.html
https://docs.fd.io/csit/master/trending/trending/index.html

CSIT REPORT, Release rls19082

2.6 Test Environment

2.6.1 Physical Testbeds

FD.io CSIT performance tests are executed in physical testbeds hosted by LF for FD.io project. Twophysical testbed topology types are used:
• 3-Node Topology: Consisting of two servers acting as SUTs (Systems Under Test) and one server asTG (Traffic Generator), all connected in ring topology.
• 2-Node Topology: Consisting of one server acting as SUTs and one server as TG both connected inring topology.

Tested SUT servers are based on a range of processors including Intel Xeon Haswell-SP, Intel XeonSkylake-SP, Intel Xeon Cascade Lake-SP, Arm, Intel Atom. More detailed description is provided in Physical
Testbeds (page 3). Tested logical topologies are described in Logical Topologies (page 37).

2.6.2 Server Specifications

Complete technical specifications of compute servers used in CSIT physical testbeds are maintained inFD.io CSIT repository: FD.io CSIT testbeds - Xeon Cascade Lake57, FD.io CSIT testbeds - Xeon Skylake,Arm, Atom58 and FD.io CSIT Testbeds - Xeon Haswell59.

2.6.3 Pre-Test Server Calibration

Number of SUT server sub-system runtime parameters have been identified as impacting data planeperformance tests. Calibrating those parameters is part of FD.io CSIT pre-test activities, and includesmeasuring and reporting following:
1. System level core jitter - measure duration of core interrupts by Linux in clock cycles and how ofteninterrupts happen. Using CPU core jitter tool60.
2. Memory bandwidth - measure bandwidth with Intel MLC tool61.
3. Memory latency - measure memory latency with Intel MLC tool.
4. Cache latency at all levels (L1, L2, and Last Level Cache) - measure cache latency with Intel MLCtool.

Measured values of listed parameters are especially important for repeatable zero packet loss throughputmeasurements across multiple system instances. Generally they come useful as a background data forcomparing data plane performance results across disparate servers.
Following sections include measured calibration data for testbeds.

2.6.4 Calibration Data - Skylake

Following sections include sample calibration data measured on s11-t31-sut1 server running in one ofthe Intel Xeon Skylake testbeds as specified in FD.io CSIT testbeds - Xeon Skylake, Arm, Atom62.
Calibration data obtained from all other servers in Skylake testbeds shows the same or similar values.

57 https://git.fd.io/csit/tree/docs/lab/testbeds_sm_clx_hw_bios_cfg.md?h=rls1908_258 https://git.fd.io/csit/tree/docs/lab/testbeds_sm_skx_hw_bios_cfg.md?h=rls1908_259 https://git.fd.io/csit/tree/docs/lab/testbeds_ucs_hsw_hw_bios_cfg.md?h=rls1908_260 https://git.fd.io/pma_tools/tree/jitter61 https://software.intel.com/en-us/articles/intelr-memory-latency-checker62 https://git.fd.io/csit/tree/docs/lab/testbeds_sm_skx_hw_bios_cfg.md?h=rls1908_2

124 Chapter 2. VPP Performance

https://git.fd.io/csit/tree/docs/lab/testbeds_sm_clx_hw_bios_cfg.md?h=rls1908_2
https://git.fd.io/csit/tree/docs/lab/testbeds_sm_skx_hw_bios_cfg.md?h=rls1908_2
https://git.fd.io/csit/tree/docs/lab/testbeds_sm_skx_hw_bios_cfg.md?h=rls1908_2
https://git.fd.io/csit/tree/docs/lab/testbeds_ucs_hsw_hw_bios_cfg.md?h=rls1908_2
https://git.fd.io/pma_tools/tree/jitter
https://software.intel.com/en-us/articles/intelr-memory-latency-checker
https://git.fd.io/csit/tree/docs/lab/testbeds_sm_skx_hw_bios_cfg.md?h=rls1908_2

CSIT REPORT, Release rls19082

Linux cmdline

$ cat /proc/cmdline
BOOT_IMAGE=/boot/vmlinuz-4.15.0-72-generic root=UUID=e05120bb-7127-43db-b1e3-a66edd4c43bd ro␣
→˓isolcpus=1-27,29-55,57-83,85-111 nohz_full=1-27,29-55,57-83,85-111 rcu_nocbs=1-27,29-55,57-83,85-
→˓111 numa_balancing=disable intel_pstate=disable intel_iommu=on iommu=pt nmi_watchdog=0 audit=0␣
→˓nosoftlockup processor.max_cstate=1 intel_idle.max_cstate=1 hpet=disable tsc=reliable mce=off␣
→˓console=tty0 console=ttyS0,115200n8

Linux uname

$ uname -a
Linux s3-t21-sut1 4.15.0-72-generic #81-Ubuntu SMP Tue Nov 26 12:20:02 UTC 2019 x86_64 x86_64 x86_
→˓64 GNU/Linux

System-level Core Jitter

$ sudo taskset -c 3 /home/testuser/pma_tools/jitter/jitter -i 20
Linux Jitter testing program version 1.8
Iterations=20
The pragram will execute a dummy function 80000 times
Display is updated every 20000 displayUpdate intervals
Timings are in CPU Core cycles
Inst_Min: Minimum Excution time during the display update interval(default is ~1 second)
Inst_Max: Maximum Excution time during the display update interval(default is ~1 second)
Inst_jitter: Jitter in the Excution time during rhe display update interval. This is the value of␣
→˓interest
last_Exec: The Excution time of last iteration just before the display update
Abs_Min: Absolute Minimum Excution time since the program started or statistics were reset
Abs_Max: Absolute Maximum Excution time since the program started or statistics were reset
tmp: Cumulative value calcualted by the dummy function
Interval: Time interval between the display updates in Core Cycles
Sample No: Sample number

Inst_Min Inst_Max Inst_jitter last_Exec Abs_min Abs_max tmp Interval ␣
→˓Sample No

160022 171330 11308 160022 160022 171330 2538733568 3204142750 ␣
→˓1

160022 167294 7272 160026 160022 171330 328335360 3203873548 ␣
→˓2

160022 167560 7538 160026 160022 171330 2412904448 3203878736 ␣
→˓3

160022 169000 8978 160024 160022 171330 202506240 3203864588 ␣
→˓4

160022 166572 6550 160026 160022 171330 2287075328 3203866224 ␣
→˓5

160022 167460 7438 160026 160022 171330 76677120 3203854632 ␣
→˓6

160022 168134 8112 160024 160022 171330 2161246208 3203874674 ␣
→˓7

160022 169094 9072 160022 160022 171330 4245815296 3203878798 ␣
→˓8

160022 172460 12438 160024 160022 172460 2035417088 3204112010 ␣
→˓9

160022 167862 7840 160030 160022 172460 4119986176 3203856800 ␣
→˓10

160022 168398 8376 160024 160022 172460 1909587968 3203854192 ␣
→˓11

(continues on next page)

2.6. Test Environment 125

CSIT REPORT, Release rls19082

(continued from previous page)
160022 167548 7526 160024 160022 172460 3994157056 3203847442 ␣

→˓12
160022 167562 7540 160026 160022 172460 1783758848 3203862936 ␣

→˓13
160022 167604 7582 160024 160022 172460 3868327936 3203859346 ␣

→˓14
160022 168262 8240 160024 160022 172460 1657929728 3203851120 ␣

→˓15
160022 169700 9678 160024 160022 172460 3742498816 3203877690 ␣

→˓16
160022 170476 10454 160026 160022 172460 1532100608 3204088480 ␣

→˓17
160022 167798 7776 160024 160022 172460 3616669696 3203862072 ␣

→˓18
160022 166540 6518 160024 160022 172460 1406271488 3203836904 ␣

→˓19
160022 167516 7494 160024 160022 172460 3490840576 3203848120 ␣

→˓20

Memory Bandwidth

$ sudo /home/testuser/mlc --bandwidth_matrix
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --bandwidth_matrix

Using buffer size of 100.000MB/thread for reads and an additional 100.000MB/thread for writes
Measuring Memory Bandwidths between nodes within system
Bandwidths are in MB/sec (1 MB/sec = 1,000,000 Bytes/sec)
Using all the threads from each core if Hyper-threading is enabled
Using Read-only traffic type

Numa node
Numa node 0 1

0 107947.7 50951.5
1 50834.6 108183.4

$ sudo /home/testuser/mlc --peak_injection_bandwidth
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --peak_injection_bandwidth

Using buffer size of 100.000MB/thread for reads and an additional 100.000MB/thread for writes

Measuring Peak Injection Memory Bandwidths for the system
Bandwidths are in MB/sec (1 MB/sec = 1,000,000 Bytes/sec)
Using all the threads from each core if Hyper-threading is enabled
Using traffic with the following read-write ratios
ALL Reads : 215733.9
3:1 Reads-Writes : 182141.9
2:1 Reads-Writes : 178615.7
1:1 Reads-Writes : 149911.3
Stream-triad like: 159533.6

$ sudo /home/testuser/mlc --max_bandwidth
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --max_bandwidth

Using buffer size of 100.000MB/thread for reads and an additional 100.000MB/thread for writes

Measuring Maximum Memory Bandwidths for the system

(continues on next page)

126 Chapter 2. VPP Performance

CSIT REPORT, Release rls19082

(continued from previous page)
Will take several minutes to complete as multiple injection rates will be tried to get the best␣
→˓bandwidth
Bandwidths are in MB/sec (1 MB/sec = 1,000,000 Bytes/sec)
Using all the threads from each core if Hyper-threading is enabled
Using traffic with the following read-write ratios
ALL Reads : 216875.73
3:1 Reads-Writes : 182615.14
2:1 Reads-Writes : 178745.67
1:1 Reads-Writes : 149485.27
Stream-triad like: 180057.87

Memory Latency

$ sudo /home/testuser/mlc --latency_matrix
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --latency_matrix

Using buffer size of 2000.000MB
Measuring idle latencies (in ns)...

Numa node
Numa node 0 1

0 81.4 131.1
1 131.1 81.3

$ sudo /home/testuser/mlc --idle_latency
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --idle_latency

Using buffer size of 2000.000MB
Each iteration took 202.0 core clocks (80.8 ns)

$ sudo /home/testuser/mlc --loaded_latency
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --loaded_latency

Using buffer size of 100.000MB/thread for reads and an additional 100.000MB/thread for writes

Measuring Loaded Latencies for the system
Using all the threads from each core if Hyper-threading is enabled
Using Read-only traffic type
Inject Latency Bandwidth
Delay (ns) MB/sec
==========================
00000 282.66 215712.8
00002 282.14 215757.4
00008 280.21 215868.1
00015 279.20 216313.2
00050 275.25 216643.0
00100 227.05 215075.0
00200 121.92 160242.9
00300 101.21 111587.4
00400 95.48 85019.7
00500 94.46 68717.3
00700 92.27 49742.2
01000 91.03 35264.8
01300 90.11 27396.3
01700 89.34 21178.7
02500 90.15 14672.8

(continues on next page)

2.6. Test Environment 127

CSIT REPORT, Release rls19082

(continued from previous page)
03500 89.00 10715.7
05000 82.00 7788.2
09000 81.46 4684.0
20000 81.40 2541.9

L1/L2/LLC Latency

$ sudo /home/testuser/mlc --c2c_latency
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --c2c_latency

Measuring cache-to-cache transfer latency (in ns)...
Local Socket L2->L2 HIT latency 53.7
Local Socket L2->L2 HITM latency 53.7
Remote Socket L2->L2 HITM latency (data address homed in writer socket)

Reader Numa Node
Writer Numa Node 0 1

0 - 113.9
1 113.9 -

Remote Socket L2->L2 HITM latency (data address homed in reader socket)
Reader Numa Node

Writer Numa Node 0 1
0 - 177.9
1 177.6 -

Spectre and Meltdown Checks

Following section displays the output of a running shell script to tell if system is vulnerable against theseveral “speculative execution” CVEs that were made public in 2018. Script is available on Spectre &Meltdown Checker Github63.
Spectre and Meltdown mitigation detection tool v0.43

awk: cannot open bash (No such file or directory)
Checking for vulnerabilities on current system
Kernel is Linux 4.15.0-72-generic #81-Ubuntu SMP Tue Nov 26 12:20:02 UTC 2019 x86_64
CPU is Intel(R) Xeon(R) Platinum 8180 CPU @ 2.50GHz

Hardware check
* Hardware support (CPU microcode) for mitigation techniques
* Indirect Branch Restricted Speculation (IBRS)

* SPEC_CTRL MSR is available: YES
* CPU indicates IBRS capability: YES (SPEC_CTRL feature bit)

* Indirect Branch Prediction Barrier (IBPB)
* PRED_CMD MSR is available: YES
* CPU indicates IBPB capability: YES (SPEC_CTRL feature bit)

* Single Thread Indirect Branch Predictors (STIBP)
* SPEC_CTRL MSR is available: YES
* CPU indicates STIBP capability: YES (Intel STIBP feature bit)

* Speculative Store Bypass Disable (SSBD)
* CPU indicates SSBD capability: YES (Intel SSBD)

* L1 data cache invalidation
* FLUSH_CMD MSR is available: YES
* CPU indicates L1D flush capability: YES (L1D flush feature bit)

* Microarchitectural Data Sampling
* VERW instruction is available: YES (MD_CLEAR feature bit)

(continues on next page)
63 https://github.com/speed47/spectre-meltdown-checker

128 Chapter 2. VPP Performance

https://github.com/speed47/spectre-meltdown-checker
https://github.com/speed47/spectre-meltdown-checker

CSIT REPORT, Release rls19082

(continued from previous page)
* Enhanced IBRS (IBRS_ALL)

* CPU indicates ARCH_CAPABILITIES MSR availability: NO
* ARCH_CAPABILITIES MSR advertises IBRS_ALL capability: NO

* CPU explicitly indicates not being vulnerable to Meltdown/L1TF (RDCL_NO): NO
* CPU explicitly indicates not being vulnerable to Variant 4 (SSB_NO): NO
* CPU/Hypervisor indicates L1D flushing is not necessary on this system: NO
* Hypervisor indicates host CPU might be vulnerable to RSB underflow (RSBA): NO
* CPU explicitly indicates not being vulnerable to Microarchitectural Data Sampling (MDS_NO): NO
* CPU explicitly indicates not being vulnerable to TSX Asynchronous Abort (TAA_NO): NO
* CPU explicitly indicates not being vulnerable to iTLB Multihit (PSCHANGE_MSC_NO): NO
* CPU explicitly indicates having MSR for TSX control (TSX_CTRL_MSR): NO
* CPU supports Transactional Synchronization Extensions (TSX): YES (RTM feature bit)
* CPU supports Software Guard Extensions (SGX): NO
* CPU microcode is known to cause stability problems: NO (model 0x55 family 0x6 stepping 0x4 ucode␣
→˓0x2000064 cpuid 0x50654)
* CPU microcode is the latest known available version: awk: cannot open bash (No such file or␣
→˓directory)
UNKNOWN (latest microcode version for your CPU model is unknown)
* CPU vulnerability to the speculative execution attack variants
* Vulnerable to CVE-2017-5753 (Spectre Variant 1, bounds check bypass): YES
* Vulnerable to CVE-2017-5715 (Spectre Variant 2, branch target injection): YES
* Vulnerable to CVE-2017-5754 (Variant 3, Meltdown, rogue data cache load): YES
* Vulnerable to CVE-2018-3640 (Variant 3a, rogue system register read): YES
* Vulnerable to CVE-2018-3639 (Variant 4, speculative store bypass): YES
* Vulnerable to CVE-2018-3615 (Foreshadow (SGX), L1 terminal fault): NO
* Vulnerable to CVE-2018-3620 (Foreshadow-NG (OS), L1 terminal fault): YES
* Vulnerable to CVE-2018-3646 (Foreshadow-NG (VMM), L1 terminal fault): YES
* Vulnerable to CVE-2018-12126 (Fallout, microarchitectural store buffer data sampling (MSBDS)):␣
→˓YES
* Vulnerable to CVE-2018-12130 (ZombieLoad, microarchitectural fill buffer data sampling (MFBDS)):␣
→˓YES
* Vulnerable to CVE-2018-12127 (RIDL, microarchitectural load port data sampling (MLPDS)): YES
* Vulnerable to CVE-2019-11091 (RIDL, microarchitectural data sampling uncacheable memory␣
→˓(MDSUM)): YES
* Vulnerable to CVE-2019-11135 (ZombieLoad V2, TSX Asynchronous Abort (TAA)): YES
* Vulnerable to CVE-2018-12207 (No eXcuses, iTLB Multihit, machine check exception on page size␣
→˓changes (MCEPSC)): YES

CVE-2017-5753 aka Spectre Variant 1, bounds check bypass
* Mitigated according to the /sys interface: YES (Mitigation: usercopy/swapgs barriers and __user␣
→˓pointer sanitization)
* Kernel has array_index_mask_nospec: YES (1 occurrence(s) found of x86 64 bits array_index_mask_
→˓nospec())
* Kernel has the Red Hat/Ubuntu patch: NO
* Kernel has mask_nospec64 (arm64): NO
> STATUS: NOT VULNERABLE (Mitigation: usercopy/swapgs barriers and __user pointer sanitization)

CVE-2017-5715 aka Spectre Variant 2, branch target injection
* Mitigated according to the /sys interface: YES (Mitigation: Full generic retpoline, IBPB:␣
→˓conditional, IBRS_FW, STIBP: conditional, RSB filling)
* Mitigation 1
* Kernel is compiled with IBRS support: YES

* IBRS enabled and active: YES (for firmware code only)
* Kernel is compiled with IBPB support: YES

* IBPB enabled and active: YES
* Mitigation 2
* Kernel has branch predictor hardening (arm): NO
* Kernel compiled with retpoline option: YES
* Kernel compiled with a retpoline-aware compiler: YES (kernel reports full retpoline␣

→˓compilation)
* Kernel supports RSB filling: YES

(continues on next page)

2.6. Test Environment 129

CSIT REPORT, Release rls19082

(continued from previous page)
> STATUS: NOT VULNERABLE (Full retpoline + IBPB are mitigating the vulnerability)

CVE-2017-5754 aka Variant 3, Meltdown, rogue data cache load
* Mitigated according to the /sys interface: YES (Mitigation: PTI)
* Kernel supports Page Table Isolation (PTI): YES
* PTI enabled and active: YES
* Reduced performance impact of PTI: YES (CPU supports INVPCID, performance impact of PTI will be␣
→˓greatly reduced)
* Running as a Xen PV DomU: NO
> STATUS: NOT VULNERABLE (Mitigation: PTI)

CVE-2018-3640 aka Variant 3a, rogue system register read
* CPU microcode mitigates the vulnerability: YES
> STATUS: NOT VULNERABLE (your CPU microcode mitigates the vulnerability)

CVE-2018-3639 aka Variant 4, speculative store bypass
* Mitigated according to the /sys interface: YES (Mitigation: Speculative Store Bypass disabled via␣
→˓prctl and seccomp)
* Kernel supports disabling speculative store bypass (SSB): YES (found in /proc/self/status)
* SSB mitigation is enabled and active: YES (per-thread through prctl)
* SSB mitigation currently active for selected processes: YES (systemd-journald systemd-logind␣
→˓systemd-networkd systemd-resolved systemd-timesyncd systemd-udevd)
> STATUS: NOT VULNERABLE (Mitigation: Speculative Store Bypass disabled via prctl and seccomp)

CVE-2018-3615 aka Foreshadow (SGX), L1 terminal fault
* CPU microcode mitigates the vulnerability: N/A
> STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

CVE-2018-3620 aka Foreshadow-NG (OS), L1 terminal fault
* Mitigated according to the /sys interface: YES (Mitigation: PTE Inversion; VMX: conditional cache␣
→˓flushes, SMT vulnerable)
* Kernel supports PTE inversion: YES (found in kernel image)
* PTE inversion enabled and active: YES
> STATUS: NOT VULNERABLE (Mitigation: PTE Inversion; VMX: conditional cache flushes, SMT vulnerable)

CVE-2018-3646 aka Foreshadow-NG (VMM), L1 terminal fault
* Information from the /sys interface: Mitigation: PTE Inversion; VMX: conditional cache flushes,␣
→˓SMT vulnerable
* This system is a host running a hypervisor: NO
* Mitigation 1 (KVM)
* EPT is disabled: NO
* Mitigation 2
* L1D flush is supported by kernel: YES (found flush_l1d in /proc/cpuinfo)
* L1D flush enabled: YES (conditional flushes)
* Hardware-backed L1D flush supported: YES (performance impact of the mitigation will be greatly␣
→˓reduced)
* Hyper-Threading (SMT) is enabled: YES
> STATUS: NOT VULNERABLE (this system is not running a hypervisor)

CVE-2018-12126 aka Fallout, microarchitectural store buffer data sampling (MSBDS)
* Mitigated according to the /sys interface: YES (Mitigation: Clear CPU buffers; SMT vulnerable)
* Kernel supports using MD_CLEAR mitigation: YES (md_clear found in /proc/cpuinfo)
* Kernel mitigation is enabled and active: YES
* SMT is either mitigated or disabled: NO
> STATUS: NOT VULNERABLE (Your microcode and kernel are both up to date for this mitigation, and␣
→˓mitigation is enabled)

CVE-2018-12130 aka ZombieLoad, microarchitectural fill buffer data sampling (MFBDS)
* Mitigated according to the /sys interface: YES (Mitigation: Clear CPU buffers; SMT vulnerable)
* Kernel supports using MD_CLEAR mitigation: YES (md_clear found in /proc/cpuinfo)
* Kernel mitigation is enabled and active: YES

(continues on next page)

130 Chapter 2. VPP Performance

CSIT REPORT, Release rls19082

(continued from previous page)
* SMT is either mitigated or disabled: NO
> STATUS: NOT VULNERABLE (Your microcode and kernel are both up to date for this mitigation, and␣
→˓mitigation is enabled)

CVE-2018-12127 aka RIDL, microarchitectural load port data sampling (MLPDS)
* Mitigated according to the /sys interface: YES (Mitigation: Clear CPU buffers; SMT vulnerable)
* Kernel supports using MD_CLEAR mitigation: YES (md_clear found in /proc/cpuinfo)
* Kernel mitigation is enabled and active: YES
* SMT is either mitigated or disabled: NO
> STATUS: NOT VULNERABLE (Your microcode and kernel are both up to date for this mitigation, and␣
→˓mitigation is enabled)

CVE-2019-11091 aka RIDL, microarchitectural data sampling uncacheable memory (MDSUM)
* Mitigated according to the /sys interface: YES (Mitigation: Clear CPU buffers; SMT vulnerable)
* Kernel supports using MD_CLEAR mitigation: YES (md_clear found in /proc/cpuinfo)
* Kernel mitigation is enabled and active: YES
* SMT is either mitigated or disabled: NO
> STATUS: NOT VULNERABLE (Your microcode and kernel are both up to date for this mitigation, and␣
→˓mitigation is enabled)

CVE-2019-11135 aka ZombieLoad V2, TSX Asynchronous Abort (TAA)
* Mitigated according to the /sys interface: YES (Mitigation: Clear CPU buffers; SMT vulnerable)
* TAA mitigation is supported by kernel: YES (found tsx_async_abort in kernel image)
* TAA mitigation enabled and active: YES (Mitigation: Clear CPU buffers; SMT vulnerable)
> STATUS: NOT VULNERABLE (Mitigation: Clear CPU buffers; SMT vulnerable)

CVE-2018-12207 aka No eXcuses, iTLB Multihit, machine check exception on page size changes (MCEPSC)
* Mitigated according to the /sys interface: YES (KVM: Mitigation: Split huge pages)
* This system is a host running a hypervisor: NO
* iTLB Multihit mitigation is supported by kernel: YES (found itlb_multihit in kernel image)
* iTLB Multihit mitigation enabled and active: YES (KVM: Mitigation: Split huge pages)
> STATUS: NOT VULNERABLE (this system is not running a hypervisor)

> SUMMARY: CVE-2017-5753:OK CVE-2017-5715:OK CVE-2017-5754:OK CVE-2018-3640:OK CVE-2018-3639:OK CVE-
→˓2018-3615:OK CVE-2018-3620:OK CVE-2018-3646:OK CVE-2018-12126:OK CVE-2018-12130:OK CVE-2018-
→˓12127:OK CVE-2019-11091:OK CVE-2019-11135:OK CVE-2018-12207:OK

2.6.5 Calibration Data - Cascade Lake

Following sections include sample calibration data measured on s32-t27-sut1 server running in one ofthe Intel Xeon Skylake testbeds as specified in FD.io CSIT testbeds - Xeon Cascade Lake64.
Calibration data obtained from all other servers in Cascade Lake testbeds shows the same or similarvalues.
Linux cmdline

$ cat /proc/cmdline
BOOT_IMAGE=/boot/vmlinuz-4.15.0-72-generic root=UUID=1d03969e-a2a0-41b2-a97e-1cc171b07e88 ro␣
→˓isolcpus=1-23,25-47,49-71,73-95 nohz_full=1-23,25-47,49-71,73-95 rcu_nocbs=1-23,25-47,49-71,73-95␣
→˓numa_balancing=disable intel_pstate=disable intel_iommu=on iommu=pt nmi_watchdog=0 audit=0␣
→˓nosoftlockup processor.max_cstate=1 intel_idle.max_cstate=1 hpet=disable tsc=reliable mce=off␣
→˓console=tty0 console=ttyS0,115200n8

64 https://git.fd.io/csit/tree/docs/lab/testbeds_sm_clx_hw_bios_cfg.md?h=rls1908_2

2.6. Test Environment 131

https://git.fd.io/csit/tree/docs/lab/testbeds_sm_clx_hw_bios_cfg.md?h=rls1908_2

CSIT REPORT, Release rls19082

Linux uname

$ uname -a
Linux s32-t27-sut1 4.15.0-72-generic #81-Ubuntu SMP Tue Nov 26 12:20:02 UTC 2019 x86_64 x86_64 x86_
→˓64 GNU/Linux

System-level Core Jitter

$ sudo taskset -c 3 /home/testuser/pma_tools/jitter/jitter -i 30
Linux Jitter testing program version 1.9
Iterations=30
The pragram will execute a dummy function 80000 times
Display is updated every 20000 displayUpdate intervals
Thread affinity will be set to core_id:7
Timings are in CPU Core cycles
Inst_Min: Minimum Excution time during the display update interval(default is ~1 second)
Inst_Max: Maximum Excution time during the display update interval(default is ~1 second)
Inst_jitter: Jitter in the Excution time during rhe display update interval. This is the value of␣
→˓interest
last_Exec: The Excution time of last iteration just before the display update
Abs_Min: Absolute Minimum Excution time since the program started or statistics were reset
Abs_Max: Absolute Maximum Excution time since the program started or statistics were reset
tmp: Cumulative value calcualted by the dummy function
Interval: Time interval between the display updates in Core Cycles
Sample No: Sample number

Inst_Min,Inst_Max,Inst_jitter,last_Exec,Abs_min,Abs_max,tmp,Interval,Sample No
160022,167590,7568,160026,160022,167590,2057568256,3203711852,1
160022,170628,10606,160024,160022,170628,4079222784,3204010824,2
160022,169824,9802,160024,160022,170628,1805910016,3203812064,3
160022,168832,8810,160030,160022,170628,3827564544,3203792594,4
160022,168248,8226,160026,160022,170628,1554251776,3203765920,5
160022,167834,7812,160028,160022,170628,3575906304,3203761114,6
160022,167442,7420,160024,160022,170628,1302593536,3203769250,7
160022,169120,9098,160028,160022,170628,3324248064,3203853340,8
160022,170710,10688,160024,160022,170710,1050935296,3203985878,9
160022,167952,7930,160024,160022,170710,3072589824,3203733756,10
160022,168314,8292,160030,160022,170710,799277056,3203741152,11
160022,169672,9650,160024,160022,170710,2820931584,3203739910,12
160022,168684,8662,160024,160022,170710,547618816,3203727336,13
160022,168246,8224,160024,160022,170710,2569273344,3203739052,14
160022,168134,8112,160030,160022,170710,295960576,3203735874,15
160022,170230,10208,160024,160022,170710,2317615104,3203996356,16
160022,167190,7168,160024,160022,170710,44302336,3203713628,17
160022,167304,7282,160024,160022,170710,2065956864,3203717954,18
160022,167500,7478,160024,160022,170710,4087611392,3203706674,19
160022,167302,7280,160024,160022,170710,1814298624,3203726452,20
160022,167266,7244,160024,160022,170710,3835953152,3203702804,21
160022,167820,7798,160022,160022,170710,1562640384,3203719138,22
160022,168100,8078,160024,160022,170710,3584294912,3203716636,23
160022,170408,10386,160024,160022,170710,1310982144,3203946958,24
160022,167276,7254,160024,160022,170710,3332636672,3203706236,25
160022,167052,7030,160024,160022,170710,1059323904,3203696444,26
160022,170322,10300,160024,160022,170710,3080978432,3203747514,27
160022,167332,7310,160024,160022,170710,807665664,3203716210,28
160022,167426,7404,160026,160022,170710,2829320192,3203700630,29
160022,168840,8818,160024,160022,170710,556007424,3203727658,30

132 Chapter 2. VPP Performance

CSIT REPORT, Release rls19082

Memory Bandwidth

$ sudo /home/testuser/mlc --bandwidth_matrix
Intel(R) Memory Latency Checker - v3.7
Command line parameters: --bandwidth_matrix

Using buffer size of 100.000MiB/thread for reads and an additional 100.000MiB/thread for writes
Measuring Memory Bandwidths between nodes within system
Bandwidths are in MB/sec (1 MB/sec = 1,000,000 Bytes/sec)
Using all the threads from each core if Hyper-threading is enabled
Using Read-only traffic type

Numa node
Numa node 0 1

0 122097.7 51327.9
1 51309.2 122005.5

$ sudo /home/testuser/mlc --peak_injection_bandwidth
Intel(R) Memory Latency Checker - v3.7
Command line parameters: --peak_injection_bandwidth

Using buffer size of 100.000MiB/thread for reads and an additional 100.000MiB/thread for writes

Measuring Peak Injection Memory Bandwidths for the system
Bandwidths are in MB/sec (1 MB/sec = 1,000,000 Bytes/sec)
Using all the threads from each core if Hyper-threading is enabled
Using traffic with the following read-write ratios
ALL Reads : 243159.4
3:1 Reads-Writes : 219132.5
2:1 Reads-Writes : 216603.1
1:1 Reads-Writes : 203713.0
Stream-triad like: 193790.8

$ sudo /home/testuser/mlc --max_bandwidth
Intel(R) Memory Latency Checker - v3.7
Command line parameters: --max_bandwidth

Using buffer size of 100.000MiB/thread for reads and an additional 100.000MiB/thread for writes

Measuring Maximum Memory Bandwidths for the system
Will take several minutes to complete as multiple injection rates will be tried to get the best␣
→˓bandwidth
Bandwidths are in MB/sec (1 MB/sec = 1,000,000 Bytes/sec)
Using all the threads from each core if Hyper-threading is enabled
Using traffic with the following read-write ratios
ALL Reads : 244114.27
3:1 Reads-Writes : 219441.97
2:1 Reads-Writes : 216603.72
1:1 Reads-Writes : 203679.09
Stream-triad like: 214902.80

Memory Latency

$ sudo /home/testuser/mlc --latency_matrix
Intel(R) Memory Latency Checker - v3.7
Command line parameters: --latency_matrix

Using buffer size of 2000.000MiB
Measuring idle latencies (in ns)...

Numa node

(continues on next page)

2.6. Test Environment 133

CSIT REPORT, Release rls19082

(continued from previous page)
Numa node 0 1

0 81.2 130.2
1 130.2 81.1

$ sudo /home/testuser/mlc --idle_latency
Intel(R) Memory Latency Checker - v3.7
Command line parameters: --idle_latency

Using buffer size of 2000.000MiB
Each iteration took 186.1 core clocks (80.9 ns)

$ sudo /home/testuser/mlc --loaded_latency
Intel(R) Memory Latency Checker - v3.7
Command line parameters: --loaded_latency

Using buffer size of 100.000MiB/thread for reads and an additional 100.000MiB/thread for writes

Measuring Loaded Latencies for the system
Using all the threads from each core if Hyper-threading is enabled
Using Read-only traffic type
Inject Latency Bandwidth
Delay (ns) MB/sec
==========================
00000 233.86 243421.9
00002 230.61 243544.1
00008 232.56 243394.5
00015 229.52 244076.6
00050 225.82 244290.6
00100 161.65 236744.8
00200 100.63 133844.0
00300 96.84 90548.2
00400 95.71 68504.3
00500 95.68 55139.0
00700 88.77 39798.4
01000 84.74 28200.1
01300 83.08 21915.5
01700 82.27 16969.3
02500 81.66 11810.6
03500 81.98 8662.9
05000 81.48 6306.8
09000 81.17 3857.8
20000 80.19 2179.9

L1/L2/LLC Latency

$ sudo /home/testuser/mlc --c2c_latency
Intel(R) Memory Latency Checker - v3.7
Command line parameters: --c2c_latency

Measuring cache-to-cache transfer latency (in ns)...
Local Socket L2->L2 HIT latency 55.5
Local Socket L2->L2 HITM latency 55.6
Remote Socket L2->L2 HITM latency (data address homed in writer socket)

Reader Numa Node
Writer Numa Node 0 1

0 - 115.6
1 115.6 -

Remote Socket L2->L2 HITM latency (data address homed in reader socket)

(continues on next page)

134 Chapter 2. VPP Performance

CSIT REPORT, Release rls19082

(continued from previous page)
Reader Numa Node

Writer Numa Node 0 1
0 - 178.2
1 178.4 -

Spectre and Meltdown Checks

Following section displays the output of a running shell script to tell if system is vulnerable against theseveral speculative execution CVEs that were made public in 2018. Script is available on Spectre & Melt-down Checker Github65.
Spectre and Meltdown mitigation detection tool v0.43

awk: fatal: cannot open file `bash for reading (No such file or directory)
Checking for vulnerabilities on current system
Kernel is Linux 4.15.0-72-generic #81-Ubuntu SMP Tue Nov 26 12:20:02 UTC 2019 x86_64
CPU is Intel(R) Xeon(R) Platinum 8280 CPU @ 2.70GHz

Hardware check
* Hardware support (CPU microcode) for mitigation techniques

* Indirect Branch Restricted Speculation (IBRS)
* SPEC_CTRL MSR is available: YES
* CPU indicates IBRS capability: YES (SPEC_CTRL feature bit)

* Indirect Branch Prediction Barrier (IBPB)
* PRED_CMD MSR is available: YES
* CPU indicates IBPB capability: YES (SPEC_CTRL feature bit)

* Single Thread Indirect Branch Predictors (STIBP)
* SPEC_CTRL MSR is available: YES
* CPU indicates STIBP capability: YES (Intel STIBP feature bit)

* Speculative Store Bypass Disable (SSBD)
* CPU indicates SSBD capability: YES (Intel SSBD)

* L1 data cache invalidation
* FLUSH_CMD MSR is available: YES
* CPU indicates L1D flush capability: YES (L1D flush feature bit)

* Microarchitectural Data Sampling
* VERW instruction is available: YES (MD_CLEAR feature bit)

* Enhanced IBRS (IBRS_ALL)
* CPU indicates ARCH_CAPABILITIES MSR availability: YES
* ARCH_CAPABILITIES MSR advertises IBRS_ALL capability: YES

* CPU explicitly indicates not being vulnerable to Meltdown/L1TF (RDCL_NO): YES
* CPU explicitly indicates not being vulnerable to Variant 4 (SSB_NO): NO
* CPU/Hypervisor indicates L1D flushing is not necessary on this system: YES
* Hypervisor indicates host CPU might be vulnerable to RSB underflow (RSBA): NO
* CPU explicitly indicates not being vulnerable to Microarchitectural Data Sampling (MDS_NO): YES
* CPU explicitly indicates not being vulnerable to TSX Asynchronous Abort (TAA_NO): NO
* CPU explicitly indicates not being vulnerable to iTLB Multihit (PSCHANGE_MSC_NO): NO
* CPU explicitly indicates having MSR for TSX control (TSX_CTRL_MSR): YES

* TSX_CTRL MSR indicates TSX RTM is disabled: YES
* TSX_CTRL MSR indicates TSX CPUID bit is cleared: YES

* CPU supports Transactional Synchronization Extensions (TSX): NO
* CPU supports Software Guard Extensions (SGX): NO
* CPU microcode is known to cause stability problems: NO (model 0x55 family 0x6 stepping 0x7␣

→˓ucode 0x500002c cpuid 0x50657)
* CPU microcode is the latest known available version: awk: fatal: cannot open file `bash for␣

→˓reading (No such file or directory)
UNKNOWN (latest microcode version for your CPU model is unknown)
* CPU vulnerability to the speculative execution attack variants

* Vulnerable to CVE-2017-5753 (Spectre Variant 1, bounds check bypass): YES

(continues on next page)
65 https://github.com/speed47/spectre-meltdown-checker

2.6. Test Environment 135

https://github.com/speed47/spectre-meltdown-checker
https://github.com/speed47/spectre-meltdown-checker

CSIT REPORT, Release rls19082

(continued from previous page)
* Vulnerable to CVE-2017-5715 (Spectre Variant 2, branch target injection): YES
* Vulnerable to CVE-2017-5754 (Variant 3, Meltdown, rogue data cache load): NO
* Vulnerable to CVE-2018-3640 (Variant 3a, rogue system register read): YES
* Vulnerable to CVE-2018-3639 (Variant 4, speculative store bypass): YES
* Vulnerable to CVE-2018-3615 (Foreshadow (SGX), L1 terminal fault): NO
* Vulnerable to CVE-2018-3620 (Foreshadow-NG (OS), L1 terminal fault): YES
* Vulnerable to CVE-2018-3646 (Foreshadow-NG (VMM), L1 terminal fault): YES
* Vulnerable to CVE-2018-12126 (Fallout, microarchitectural store buffer data sampling (MSBDS)):␣

→˓NO
* Vulnerable to CVE-2018-12130 (ZombieLoad, microarchitectural fill buffer data sampling␣

→˓(MFBDS)): NO
* Vulnerable to CVE-2018-12127 (RIDL, microarchitectural load port data sampling (MLPDS)): NO
* Vulnerable to CVE-2019-11091 (RIDL, microarchitectural data sampling uncacheable memory␣

→˓(MDSUM)): NO
* Vulnerable to CVE-2019-11135 (ZombieLoad V2, TSX Asynchronous Abort (TAA)): NO
* Vulnerable to CVE-2018-12207 (No eXcuses, iTLB Multihit, machine check exception on page size␣

→˓changes (MCEPSC)): YES

CVE-2017-5753 aka Spectre Variant 1, bounds check bypass
* Mitigated according to the /sys interface: YES (Mitigation: usercopy/swapgs barriers and __user␣
→˓pointer sanitization)
* Kernel has array_index_mask_nospec: YES (1 occurrence(s) found of x86 64 bits array_index_mask_
→˓nospec())
* Kernel has the Red Hat/Ubuntu patch: NO
* Kernel has mask_nospec64 (arm64): NO
> STATUS: NOT VULNERABLE (Mitigation: usercopy/swapgs barriers and __user pointer sanitization)

CVE-2017-5715 aka Spectre Variant 2, branch target injection
* Mitigated according to the /sys interface: YES (Mitigation: Enhanced IBRS, IBPB: conditional, RSB␣
→˓filling)
* Mitigation 1

* Kernel is compiled with IBRS support: YES
* IBRS enabled and active: YES (Enhanced flavor, performance impact will be greatly reduced)

* Kernel is compiled with IBPB support: YES
* IBPB enabled and active: YES

* Mitigation 2
* Kernel has branch predictor hardening (arm): NO
* Kernel compiled with retpoline option: YES
* Kernel supports RSB filling: YES

> STATUS: NOT VULNERABLE (Enhanced IBRS + IBPB are mitigating the vulnerability)

CVE-2017-5754 aka Variant 3, Meltdown, rogue data cache load
* Mitigated according to the /sys interface: YES (Not affected)
* Kernel supports Page Table Isolation (PTI): YES

* PTI enabled and active: UNKNOWN (dmesg truncated, please reboot and relaunch this script)
* Reduced performance impact of PTI: YES (CPU supports INVPCID, performance impact of PTI will be␣

→˓greatly reduced)
* Running as a Xen PV DomU: NO
> STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

CVE-2018-3640 aka Variant 3a, rogue system register read
* CPU microcode mitigates the vulnerability: YES
> STATUS: NOT VULNERABLE (your CPU microcode mitigates the vulnerability)

CVE-2018-3639 aka Variant 4, speculative store bypass
* Mitigated according to the /sys interface: YES (Mitigation: Speculative Store Bypass disabled via␣
→˓prctl and seccomp)
* Kernel supports disabling speculative store bypass (SSB): YES (found in /proc/self/status)
* SSB mitigation is enabled and active: YES (per-thread through prctl)
* SSB mitigation currently active for selected processes: YES (systemd-journald systemd-logind␣
→˓systemd-networkd systemd-resolved systemd-timesyncd systemd-udevd)

(continues on next page)

136 Chapter 2. VPP Performance

CSIT REPORT, Release rls19082

(continued from previous page)
> STATUS: NOT VULNERABLE (Mitigation: Speculative Store Bypass disabled via prctl and seccomp)

CVE-2018-3615 aka Foreshadow (SGX), L1 terminal fault
* CPU microcode mitigates the vulnerability: N/A
> STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

CVE-2018-3620 aka Foreshadow-NG (OS), L1 terminal fault
* Mitigated according to the /sys interface: YES (Not affected)
* Kernel supports PTE inversion: YES (found in kernel image)
* PTE inversion enabled and active: NO
> STATUS: NOT VULNERABLE (Not affected)

CVE-2018-3646 aka Foreshadow-NG (VMM), L1 terminal fault
* Information from the /sys interface: Not affected
* This system is a host running a hypervisor: NO
* Mitigation 1 (KVM)

* EPT is disabled: NO
* Mitigation 2

* L1D flush is supported by kernel: YES (found flush_l1d in /proc/cpuinfo)
* L1D flush enabled: NO
* Hardware-backed L1D flush supported: YES (performance impact of the mitigation will be greatly␣

→˓reduced)
* Hyper-Threading (SMT) is enabled: YES

> STATUS: NOT VULNERABLE (your kernel reported your CPU model as not vulnerable)

CVE-2018-12126 aka Fallout, microarchitectural store buffer data sampling (MSBDS)
* Mitigated according to the /sys interface: YES (Not affected)
* Kernel supports using MD_CLEAR mitigation: YES (md_clear found in /proc/cpuinfo)
* Kernel mitigation is enabled and active: NO
* SMT is either mitigated or disabled: NO
> STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

CVE-2018-12130 aka ZombieLoad, microarchitectural fill buffer data sampling (MFBDS)
* Mitigated according to the /sys interface: YES (Not affected)
* Kernel supports using MD_CLEAR mitigation: YES (md_clear found in /proc/cpuinfo)
* Kernel mitigation is enabled and active: NO
* SMT is either mitigated or disabled: NO
> STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

CVE-2018-12127 aka RIDL, microarchitectural load port data sampling (MLPDS)
* Mitigated according to the /sys interface: YES (Not affected)
* Kernel supports using MD_CLEAR mitigation: YES (md_clear found in /proc/cpuinfo)
* Kernel mitigation is enabled and active: NO
* SMT is either mitigated or disabled: NO
> STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

CVE-2019-11091 aka RIDL, microarchitectural data sampling uncacheable memory (MDSUM)
* Mitigated according to the /sys interface: YES (Not affected)
* Kernel supports using MD_CLEAR mitigation: YES (md_clear found in /proc/cpuinfo)
* Kernel mitigation is enabled and active: NO
* SMT is either mitigated or disabled: NO
> STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

CVE-2019-11135 aka ZombieLoad V2, TSX Asynchronous Abort (TAA)
* Mitigated according to the /sys interface: YES (Mitigation: TSX disabled)
* TAA mitigation is supported by kernel: YES (found tsx_async_abort in kernel image)
* TAA mitigation enabled and active: YES (Mitigation: TSX disabled)
> STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

CVE-2018-12207 aka No eXcuses, iTLB Multihit, machine check exception on page size changes (MCEPSC)
* Mitigated according to the /sys interface: YES (KVM: Mitigation: Split huge pages)

(continues on next page)

2.6. Test Environment 137

CSIT REPORT, Release rls19082

(continued from previous page)
* This system is a host running a hypervisor: NO
* iTLB Multihit mitigation is supported by kernel: YES (found itlb_multihit in kernel image)
* iTLB Multihit mitigation enabled and active: YES (KVM: Mitigation: Split huge pages)
> STATUS: NOT VULNERABLE (this system is not running a hypervisor)

> SUMMARY: CVE-2017-5753:OK CVE-2017-5715:OK CVE-2017-5754:OK CVE-2018-3640:OK CVE-2018-3639:OK CVE-
→˓2018-3615:OK CVE-2018-3620:OK CVE-2018-3646:OK CVE-2018-12126:OK CVE-2018-12130:OK CVE-2018-
→˓12127:OK CVE-2019-11091:OK CVE-2019-11135:OK CVE-2018-12207:OK

awk: fatal: cannot open file `bash for reading (No such file or directory)
Checking for vulnerabilities on current system
Kernel is Linux 4.15.0-72-generic #81-Ubuntu SMP Tue Nov 26 12:20:02 UTC 2019 x86_64
CPU is Intel(R) Xeon(R) Gold 6252N CPU @ 2.30GHz

Hardware check
* Hardware support (CPU microcode) for mitigation techniques

* Indirect Branch Restricted Speculation (IBRS)
* SPEC_CTRL MSR is available: YES
* CPU indicates IBRS capability: YES (SPEC_CTRL feature bit)

* Indirect Branch Prediction Barrier (IBPB)
* PRED_CMD MSR is available: YES
* CPU indicates IBPB capability: YES (SPEC_CTRL feature bit)

* Single Thread Indirect Branch Predictors (STIBP)
* SPEC_CTRL MSR is available: YES
* CPU indicates STIBP capability: YES (Intel STIBP feature bit)

* Speculative Store Bypass Disable (SSBD)
* CPU indicates SSBD capability: YES (Intel SSBD)

* L1 data cache invalidation
* FLUSH_CMD MSR is available: YES
* CPU indicates L1D flush capability: YES (L1D flush feature bit)

* Microarchitectural Data Sampling
* VERW instruction is available: YES (MD_CLEAR feature bit)

* Enhanced IBRS (IBRS_ALL)
* CPU indicates ARCH_CAPABILITIES MSR availability: YES
* ARCH_CAPABILITIES MSR advertises IBRS_ALL capability: YES

* CPU explicitly indicates not being vulnerable to Meltdown/L1TF (RDCL_NO): YES
* CPU explicitly indicates not being vulnerable to Variant 4 (SSB_NO): NO
* CPU/Hypervisor indicates L1D flushing is not necessary on this system: YES
* Hypervisor indicates host CPU might be vulnerable to RSB underflow (RSBA): NO
* CPU explicitly indicates not being vulnerable to Microarchitectural Data Sampling (MDS_NO): YES
* CPU explicitly indicates not being vulnerable to TSX Asynchronous Abort (TAA_NO): NO
* CPU explicitly indicates not being vulnerable to iTLB Multihit (PSCHANGE_MSC_NO): NO
* CPU explicitly indicates having MSR for TSX control (TSX_CTRL_MSR): YES

* TSX_CTRL MSR indicates TSX RTM is disabled: YES
* TSX_CTRL MSR indicates TSX CPUID bit is cleared: YES

* CPU supports Transactional Synchronization Extensions (TSX): NO
* CPU supports Software Guard Extensions (SGX): NO
* CPU microcode is known to cause stability problems: NO (family 0x6 model 0x55 stepping 0x7␣

→˓ucode 0x500002c cpuid 0x50657)
* CPU microcode is the latest known available version: awk: fatal: cannot open file `bash for␣

→˓reading (No such file or directory)
UNKNOWN (latest microcode version for your CPU model is unknown)
* CPU vulnerability to the speculative execution attack variants

* Vulnerable to CVE-2017-5753 (Spectre Variant 1, bounds check bypass): YES
* Vulnerable to CVE-2017-5715 (Spectre Variant 2, branch target injection): YES
* Vulnerable to CVE-2017-5754 (Variant 3, Meltdown, rogue data cache load): NO
* Vulnerable to CVE-2018-3640 (Variant 3a, rogue system register read): YES
* Vulnerable to CVE-2018-3639 (Variant 4, speculative store bypass): YES
* Vulnerable to CVE-2018-3615 (Foreshadow (SGX), L1 terminal fault): NO
* Vulnerable to CVE-2018-3620 (Foreshadow-NG (OS), L1 terminal fault): YES
* Vulnerable to CVE-2018-3646 (Foreshadow-NG (VMM), L1 terminal fault): YES

(continues on next page)

138 Chapter 2. VPP Performance

CSIT REPORT, Release rls19082

(continued from previous page)
* Vulnerable to CVE-2018-12126 (Fallout, microarchitectural store buffer data sampling (MSBDS)):␣

→˓NO
* Vulnerable to CVE-2018-12130 (ZombieLoad, microarchitectural fill buffer data sampling␣

→˓(MFBDS)): NO
* Vulnerable to CVE-2018-12127 (RIDL, microarchitectural load port data sampling (MLPDS)): NO
* Vulnerable to CVE-2019-11091 (RIDL, microarchitectural data sampling uncacheable memory␣

→˓(MDSUM)): NO
* Vulnerable to CVE-2019-11135 (ZombieLoad V2, TSX Asynchronous Abort (TAA)): NO
* Vulnerable to CVE-2018-12207 (No eXcuses, iTLB Multihit, machine check exception on page size␣

→˓changes (MCEPSC)): YES

CVE-2017-5753 aka Spectre Variant 1, bounds check bypass
* Mitigated according to the /sys interface: YES (Mitigation: usercopy/swapgs barriers and __user␣
→˓pointer sanitization)
* Kernel has array_index_mask_nospec: YES (1 occurrence(s) found of x86 64 bits array_index_mask_
→˓nospec())
* Kernel has the Red Hat/Ubuntu patch: NO
* Kernel has mask_nospec64 (arm64): NO
> STATUS: NOT VULNERABLE (Mitigation: usercopy/swapgs barriers and __user pointer sanitization)

CVE-2017-5715 aka Spectre Variant 2, branch target injection
* Mitigated according to the /sys interface: YES (Mitigation: Enhanced IBRS, IBPB: conditional, RSB␣
→˓filling)
* Mitigation 1

* Kernel is compiled with IBRS support: YES
* IBRS enabled and active: YES (Enhanced flavor, performance impact will be greatly reduced)

* Kernel is compiled with IBPB support: YES
* IBPB enabled and active: YES

* Mitigation 2
* Kernel has branch predictor hardening (arm): NO
* Kernel compiled with retpoline option: YES
* Kernel supports RSB filling: YES

> STATUS: NOT VULNERABLE (Enhanced IBRS + IBPB are mitigating the vulnerability)

CVE-2017-5754 aka Variant 3, Meltdown, rogue data cache load
* Mitigated according to the /sys interface: YES (Not affected)
* Kernel supports Page Table Isolation (PTI): YES

* PTI enabled and active: UNKNOWN (dmesg truncated, please reboot and relaunch this script)
* Reduced performance impact of PTI: YES (CPU supports INVPCID, performance impact of PTI will be␣

→˓greatly reduced)
* Running as a Xen PV DomU: NO
> STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

CVE-2018-3640 aka Variant 3a, rogue system register read
* CPU microcode mitigates the vulnerability: YES
> STATUS: NOT VULNERABLE (your CPU microcode mitigates the vulnerability)

CVE-2018-3639 aka Variant 4, speculative store bypass
* Mitigated according to the /sys interface: YES (Mitigation: Speculative Store Bypass disabled via␣
→˓prctl and seccomp)
* Kernel supports disabling speculative store bypass (SSB): YES (found in /proc/self/status)
* SSB mitigation is enabled and active: YES (per-thread through prctl)
* SSB mitigation currently active for selected processes: YES (systemd-journald systemd-logind␣
→˓systemd-networkd systemd-resolved systemd-timesyncd systemd-udevd)
> STATUS: NOT VULNERABLE (Mitigation: Speculative Store Bypass disabled via prctl and seccomp)

CVE-2018-3615 aka Foreshadow (SGX), L1 terminal fault
* CPU microcode mitigates the vulnerability: N/A
> STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

CVE-2018-3620 aka Foreshadow-NG (OS), L1 terminal fault

(continues on next page)

2.6. Test Environment 139

CSIT REPORT, Release rls19082

(continued from previous page)
* Mitigated according to the /sys interface: YES (Not affected)
* Kernel supports PTE inversion: YES (found in kernel image)
* PTE inversion enabled and active: NO
> STATUS: NOT VULNERABLE (Not affected)

CVE-2018-3646 aka Foreshadow-NG (VMM), L1 terminal fault
* Information from the /sys interface: Not affected
* This system is a host running a hypervisor: NO
* Mitigation 1 (KVM)

* EPT is disabled: NO
* Mitigation 2

* L1D flush is supported by kernel: YES (found flush_l1d in /proc/cpuinfo)
* L1D flush enabled: NO
* Hardware-backed L1D flush supported: YES (performance impact of the mitigation will be greatly␣

→˓reduced)
* Hyper-Threading (SMT) is enabled: YES

> STATUS: NOT VULNERABLE (your kernel reported your CPU model as not vulnerable)

CVE-2018-12126 aka Fallout, microarchitectural store buffer data sampling (MSBDS)
* Mitigated according to the /sys interface: YES (Not affected)
* Kernel supports using MD_CLEAR mitigation: YES (md_clear found in /proc/cpuinfo)
* Kernel mitigation is enabled and active: NO
* SMT is either mitigated or disabled: NO
> STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

CVE-2018-12130 aka ZombieLoad, microarchitectural fill buffer data sampling (MFBDS)
* Mitigated according to the /sys interface: YES (Not affected)
* Kernel supports using MD_CLEAR mitigation: YES (md_clear found in /proc/cpuinfo)
* Kernel mitigation is enabled and active: NO
* SMT is either mitigated or disabled: NO
> STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

CVE-2018-12127 aka RIDL, microarchitectural load port data sampling (MLPDS)
* Mitigated according to the /sys interface: YES (Not affected)
* Kernel supports using MD_CLEAR mitigation: YES (md_clear found in /proc/cpuinfo)
* Kernel mitigation is enabled and active: NO
* SMT is either mitigated or disabled: NO
> STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

CVE-2019-11091 aka RIDL, microarchitectural data sampling uncacheable memory (MDSUM)
* Mitigated according to the /sys interface: YES (Not affected)
* Kernel supports using MD_CLEAR mitigation: YES (md_clear found in /proc/cpuinfo)
* Kernel mitigation is enabled and active: NO
* SMT is either mitigated or disabled: NO
> STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

CVE-2019-11135 aka ZombieLoad V2, TSX Asynchronous Abort (TAA)
* Mitigated according to the /sys interface: YES (Mitigation: TSX disabled)
* TAA mitigation is supported by kernel: YES (found tsx_async_abort in kernel image)
* TAA mitigation enabled and active: YES (Mitigation: TSX disabled)
> STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

CVE-2018-12207 aka No eXcuses, iTLB Multihit, machine check exception on page size changes (MCEPSC)
* Mitigated according to the /sys interface: YES (KVM: Mitigation: Split huge pages)
* This system is a host running a hypervisor: NO
* iTLB Multihit mitigation is supported by kernel: YES (found itlb_multihit in kernel image)
* iTLB Multihit mitigation enabled and active: YES (KVM: Mitigation: Split huge pages)
> STATUS: NOT VULNERABLE (this system is not running a hypervisor)

> SUMMARY: CVE-2017-5753:OK CVE-2017-5715:OK CVE-2017-5754:OK CVE-2018-3640:OK CVE-2018-3639:OK CVE-
→˓2018-3615:OK CVE-2018-3620:OK CVE-2018-3646:OK CVE-2018-12126:OK CVE-2018-12130:OK CVE-2018-
→˓12127:OK CVE-2019-11091:OK CVE-2019-11135:OK CVE-2018-12207:OK (continues on next page)

140 Chapter 2. VPP Performance

CSIT REPORT, Release rls19082

(continued from previous page)

2.6.6 Calibration Data - Haswell

Following sections include sample calibration data measured on t1-sut1 server running in one of the IntelXeon Haswell testbeds as specified in FD.io CSIT Testbeds - Xeon Haswell66.
Calibration data obtained from all other servers in Haswell testbeds shows the same or similar values.
Linux cmdline

$ cat /proc/cmdline
BOOT_IMAGE=/vmlinuz-4.15.0-72-generic root=UUID=c59ae603-8076-41f4-bb5d-bc3fc8dd3ea1 ro isolcpus=1-
→˓17,19-35 nohz_full=1-17,19-35 rcu_nocbs=1-17,19-35 numa_balancing=disable intel_pstate=disable␣
→˓intel_iommu=on iommu=pt nmi_watchdog=0 audit=0 nosoftlockup processor.max_cstate=1 intel_idle.max_
→˓cstate=1 hpet=disable tsc=reliable mce=off console=tty0console=ttyS0,115200n8

Linux uname

$ uname -a
Linux t1-tg1 4.15.0-72-generic #81-Ubuntu SMP Tue Nov 26 12:20:02 UTC 2019 x86_64 x86_64 x86_64 GNU/
→˓Linux

System-level Core Jitter

$ sudo taskset -c 3 /home/testuser/pma_tools/jitter/jitter -i 30
Linux Jitter testing program version 1.8
Iterations=30
The pragram will execute a dummy function 80000 times
Display is updated every 20000 displayUpdate intervals
Timings are in CPU Core cycles
Inst_Min: Minimum Excution time during the display update interval(default is ~1 second)
Inst_Max: Maximum Excution time during the display update interval(default is ~1 second)
Inst_jitter: Jitter in the Excution time during rhe display update interval. This is the value of␣
→˓interest
last_Exec: The Excution time of last iteration just before the display update
Abs_Min: Absolute Minimum Excution time since the program started or statistics were reset
Abs_Max: Absolute Maximum Excution time since the program started or statistics were reset
tmp: Cumulative value calcualted by the dummy function
Interval: Time interval between the display updates in Core Cycles
Sample No: Sample number

Inst_Min Inst_Max Inst_jitter last_Exec Abs_min Abs_max tmp Interval ␣
→˓Sample No

160024 172636 12612 160028 160024 172636 1573060608 3205463144 ␣
→˓1

160024 188236 28212 160028 160024 188236 958595072 3205500844 ␣
→˓2

160024 185676 25652 160028 160024 188236 344129536 3205485976 ␣
→˓3

160024 172608 12584 160024 160024 188236 4024631296 3205472740 ␣
→˓4

160024 179260 19236 160028 160024 188236 3410165760 3205502164 ␣
→˓5 (continues on next page)
66 https://git.fd.io/csit/tree/docs/lab/testbeds_ucs_hsw_hw_bios_cfg.md?h=rls1908_2

2.6. Test Environment 141

https://git.fd.io/csit/tree/docs/lab/testbeds_ucs_hsw_hw_bios_cfg.md?h=rls1908_2

CSIT REPORT, Release rls19082

(continued from previous page)
160024 172432 12408 160024 160024 188236 2795700224 3205452036 ␣

→˓6
160024 178820 18796 160024 160024 188236 2181234688 3205455408 ␣

→˓7
160024 172512 12488 160028 160024 188236 1566769152 3205461528 ␣

→˓8
160024 172636 12612 160028 160024 188236 952303616 3205478820 ␣

→˓9
160024 173676 13652 160028 160024 188236 337838080 3205470412 ␣

→˓10
160024 178776 18752 160028 160024 188236 4018339840 3205481472 ␣

→˓11
160024 172788 12764 160028 160024 188236 3403874304 3205492336 ␣

→˓12
160024 174616 14592 160028 160024 188236 2789408768 3205474904 ␣

→˓13
160024 174440 14416 160028 160024 188236 2174943232 3205479448 ␣

→˓14
160024 178748 18724 160024 160024 188236 1560477696 3205482668 ␣

→˓15
160024 172588 12564 169404 160024 188236 946012160 3205510496 ␣

→˓16
160024 172636 12612 160024 160024 188236 331546624 3205472204 ␣

→˓17
160024 172480 12456 160024 160024 188236 4012048384 3205455864 ␣

→˓18
160024 172740 12716 160028 160024 188236 3397582848 3205464932 ␣

→˓19
160024 179200 19176 160028 160024 188236 2783117312 3205476012 ␣

→˓20
160024 172480 12456 160028 160024 188236 2168651776 3205465632 ␣

→˓21
160024 172728 12704 160024 160024 188236 1554186240 3205497204 ␣

→˓22
160024 172620 12596 160028 160024 188236 939720704 3205466972 ␣

→˓23
160024 172640 12616 160028 160024 188236 325255168 3205471216 ␣

→˓24
160024 172484 12460 160028 160024 188236 4005756928 3205467388 ␣

→˓25
160024 172636 12612 160028 160024 188236 3391291392 3205482748 ␣

→˓26
160024 179056 19032 160024 160024 188236 2776825856 3205467152 ␣

→˓27
160024 172672 12648 160024 160024 188236 2162360320 3205483268 ␣

→˓28
160024 176932 16908 160024 160024 188236 1547894784 3205488536 ␣

→˓29
160024 172452 12428 160028 160024 188236 933429248 3205440636 ␣

→˓30

Memory Bandwidth

$ sudo /home/testuser/mlc --bandwidth_matrix
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --bandwidth_matrix

Using buffer size of 100.000MB/thread for reads and an additional 100.000MB/thread for writes
Measuring Memory Bandwidths between nodes within system

(continues on next page)

142 Chapter 2. VPP Performance

CSIT REPORT, Release rls19082

(continued from previous page)
Bandwidths are in MB/sec (1 MB/sec = 1,000,000 Bytes/sec)
Using all the threads from each core if Hyper-threading is enabled
Using Read-only traffic type

Numa node
Numa node 0 1

0 57935.5 30265.2
1 30284.6 58409.9

$ sudo /home/testuser/mlc --peak_injection_bandwidth
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --peak_injection_bandwidth

Using buffer size of 100.000MB/thread for reads and an additional 100.000MB/thread for writes

Measuring Peak Injection Memory Bandwidths for the system
Bandwidths are in MB/sec (1 MB/sec = 1,000,000 Bytes/sec)
Using all the threads from each core if Hyper-threading is enabled
Using traffic with the following read-write ratios
ALL Reads : 115762.2
3:1 Reads-Writes : 106242.2
2:1 Reads-Writes : 103031.8
1:1 Reads-Writes : 87943.7
Stream-triad like: 100048.4

$ sudo /home/testuser/mlc --max_bandwidth
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --max_bandwidth

Using buffer size of 100.000MB/thread for reads and an additional 100.000MB/thread for writes

Measuring Maximum Memory Bandwidths for the system
Will take several minutes to complete as multiple injection rates will be tried to get the best␣
→˓bandwidth
Bandwidths are in MB/sec (1 MB/sec = 1,000,000 Bytes/sec)
Using all the threads from each core if Hyper-threading is enabled
Using traffic with the following read-write ratios
ALL Reads : 115782.41
3:1 Reads-Writes : 105965.78
2:1 Reads-Writes : 103162.38
1:1 Reads-Writes : 88255.82
Stream-triad like: 105608.10

Memory Latency

$ sudo /home/testuser/mlc --latency_matrix
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --latency_matrix

Using buffer size of 200.000MB
Measuring idle latencies (in ns)...

Numa node
Numa node 0 1

0 101.0 132.0
1 141.2 98.8

$ sudo /home/testuser/mlc --idle_latency
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --idle_latency

(continues on next page)

2.6. Test Environment 143

CSIT REPORT, Release rls19082

(continued from previous page)
Using buffer size of 200.000MB
Each iteration took 227.2 core clocks (99.0 ns)

$ sudo /home/testuser/mlc --loaded_latency
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --loaded_latency

Using buffer size of 100.000MB/thread for reads and an additional 100.000MB/thread for writes

Measuring Loaded Latencies for the system
Using all the threads from each core if Hyper-threading is enabled
Using Read-only traffic type
Inject Latency Bandwidth
Delay (ns) MB/sec
==========================
00000 294.08 115841.6
00002 294.27 115851.5
00008 293.67 115821.8
00015 278.92 115587.5
00050 246.80 113991.2
00100 206.86 104508.1
00200 123.72 72873.6
00300 113.35 52641.1
00400 108.89 41078.9
00500 108.11 33699.1
00700 106.19 24878.0
01000 104.75 17948.1
01300 103.72 14089.0
01700 102.95 11013.6
02500 102.25 7756.3
03500 101.81 5749.3
05000 101.46 4230.4
09000 101.05 2641.4
20000 100.77 1542.5

L1/L2/LLC Latency

$ sudo /home/testuser/mlc --c2c_latency
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --c2c_latency

Measuring cache-to-cache transfer latency (in ns)...
Local Socket L2->L2 HIT latency 42.1
Local Socket L2->L2 HITM latency 47.0
Remote Socket L2->L2 HITM latency (data address homed in writer socket)

Reader Numa Node
Writer Numa Node 0 1

0 - 108.0
1 106.9 -

Remote Socket L2->L2 HITM latency (data address homed in reader socket)
Reader Numa Node

Writer Numa Node 0 1
0 - 107.7
1 106.6 -

144 Chapter 2. VPP Performance

CSIT REPORT, Release rls19082

Spectre and Meltdown Checks

Following section displays the output of a running shell script to tell if system is vulnerable against theseveral “speculative execution” CVEs that were made public in 2018. Script is available on Spectre &Meltdown Checker Github67.
Spectre and Meltdown mitigation detection tool v0.43

awk: cannot open bash (No such file or directory)
Checking for vulnerabilities on current system
Kernel is Linux 4.15.0-72-generic #81-Ubuntu SMP Tue Nov 26 12:20:02 UTC 2019 x86_64
CPU is Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz

Hardware check
* Hardware support (CPU microcode) for mitigation techniques
* Indirect Branch Restricted Speculation (IBRS)

* SPEC_CTRL MSR is available: YES
* CPU indicates IBRS capability: YES (SPEC_CTRL feature bit)

* Indirect Branch Prediction Barrier (IBPB)
* PRED_CMD MSR is available: YES
* CPU indicates IBPB capability: YES (SPEC_CTRL feature bit)

* Single Thread Indirect Branch Predictors (STIBP)
* SPEC_CTRL MSR is available: YES
* CPU indicates STIBP capability: YES (Intel STIBP feature bit)

* Speculative Store Bypass Disable (SSBD)
* CPU indicates SSBD capability: YES (Intel SSBD)

* L1 data cache invalidation
* FLUSH_CMD MSR is available: YES
* CPU indicates L1D flush capability: YES (L1D flush feature bit)

* Microarchitectural Data Sampling
* VERW instruction is available: YES (MD_CLEAR feature bit)

* Enhanced IBRS (IBRS_ALL)
* CPU indicates ARCH_CAPABILITIES MSR availability: NO
* ARCH_CAPABILITIES MSR advertises IBRS_ALL capability: NO

* CPU explicitly indicates not being vulnerable to Meltdown/L1TF (RDCL_NO): NO
* CPU explicitly indicates not being vulnerable to Variant 4 (SSB_NO): NO
* CPU/Hypervisor indicates L1D flushing is not necessary on this system: NO
* Hypervisor indicates host CPU might be vulnerable to RSB underflow (RSBA): NO
* CPU explicitly indicates not being vulnerable to Microarchitectural Data Sampling (MDS_NO): NO
* CPU explicitly indicates not being vulnerable to TSX Asynchronous Abort (TAA_NO): NO
* CPU explicitly indicates not being vulnerable to iTLB Multihit (PSCHANGE_MSC_NO): NO
* CPU explicitly indicates having MSR for TSX control (TSX_CTRL_MSR): NO
* CPU supports Transactional Synchronization Extensions (TSX): NO
* CPU supports Software Guard Extensions (SGX): NO
* CPU microcode is known to cause stability problems: NO (model 0x3f family 0x6 stepping 0x2␣

→˓ucode 0x43 cpuid 0x306f2)
* CPU microcode is the latest known available version: awk: cannot open bash (No such file or␣

→˓directory)
UNKNOWN (latest microcode version for your CPU model is unknown)
* CPU vulnerability to the speculative execution attack variants

* Vulnerable to CVE-2017-5753 (Spectre Variant 1, bounds check bypass): YES
* Vulnerable to CVE-2017-5715 (Spectre Variant 2, branch target injection): YES
* Vulnerable to CVE-2017-5754 (Variant 3, Meltdown, rogue data cache load): YES
* Vulnerable to CVE-2018-3640 (Variant 3a, rogue system register read): YES
* Vulnerable to CVE-2018-3639 (Variant 4, speculative store bypass): YES
* Vulnerable to CVE-2018-3615 (Foreshadow (SGX), L1 terminal fault): NO
* Vulnerable to CVE-2018-3620 (Foreshadow-NG (OS), L1 terminal fault): YES
* Vulnerable to CVE-2018-3646 (Foreshadow-NG (VMM), L1 terminal fault): YES
* Vulnerable to CVE-2018-12126 (Fallout, microarchitectural store buffer data sampling (MSBDS)):␣

→˓YES
* Vulnerable to CVE-2018-12130 (ZombieLoad, microarchitectural fill buffer data sampling␣

→˓(MFBDS)): YES (continues on next page)
67 https://github.com/speed47/spectre-meltdown-checker

2.6. Test Environment 145

https://github.com/speed47/spectre-meltdown-checker
https://github.com/speed47/spectre-meltdown-checker

CSIT REPORT, Release rls19082

(continued from previous page)
* Vulnerable to CVE-2018-12127 (RIDL, microarchitectural load port data sampling (MLPDS)): YES
* Vulnerable to CVE-2019-11091 (RIDL, microarchitectural data sampling uncacheable memory␣

→˓(MDSUM)): YES
* Vulnerable to CVE-2019-11135 (ZombieLoad V2, TSX Asynchronous Abort (TAA)): NO
* Vulnerable to CVE-2018-12207 (No eXcuses, iTLB Multihit, machine check exception on page size␣

→˓changes (MCEPSC)): YES

CVE-2017-5753 aka Spectre Variant 1, bounds check bypass
* Mitigated according to the /sys interface: YES (Mitigation: usercopy/swapgs barriers and __user␣
→˓pointer sanitization)
* Kernel has array_index_mask_nospec: YES (1 occurrence(s) found of x86 64 bits array_index_mask_
→˓nospec())
* Kernel has the Red Hat/Ubuntu patch: NO
* Kernel has mask_nospec64 (arm64): NO
> STATUS: NOT VULNERABLE (Mitigation: usercopy/swapgs barriers and __user pointer sanitization)

CVE-2017-5715 aka Spectre Variant 2, branch target injection
* Mitigated according to the /sys interface: YES (Mitigation: Full generic retpoline, IBPB:␣
→˓conditional, IBRS_FW, RSB filling)
* Mitigation 1

* Kernel is compiled with IBRS support: YES
* IBRS enabled and active: YES (for firmware code only)

* Kernel is compiled with IBPB support: YES
* IBPB enabled and active: YES

* Mitigation 2
* Kernel has branch predictor hardening (arm): NO
* Kernel compiled with retpoline option: YES

* Kernel compiled with a retpoline-aware compiler: YES (kernel reports full retpoline␣
→˓compilation)
> STATUS: NOT VULNERABLE (Full retpoline + IBPB are mitigating the vulnerability)

CVE-2017-5754 aka Variant 3, Meltdown, rogue data cache load
* Mitigated according to the /sys interface: YES (Mitigation: PTI)
* Kernel supports Page Table Isolation (PTI): YES

* PTI enabled and active: YES
* Reduced performance impact of PTI: YES (CPU supports INVPCID, performance impact of PTI will be␣

→˓greatly reduced)
* Running as a Xen PV DomU: NO
> STATUS: NOT VULNERABLE (Mitigation: PTI)

CVE-2018-3640 aka Variant 3a, rogue system register read
* CPU microcode mitigates the vulnerability: YES
> STATUS: NOT VULNERABLE (your CPU microcode mitigates the vulnerability)

CVE-2018-3639 aka Variant 4, speculative store bypass
* Mitigated according to the /sys interface: YES (Mitigation: Speculative Store Bypass disabled via␣
→˓prctl and seccomp)
* Kernel supports disabling speculative store bypass (SSB): YES (found in /proc/self/status)
* SSB mitigation is enabled and active: YES (per-thread through prctl)
* SSB mitigation currently active for selected processes: YES (systemd-journald systemd-logind␣
→˓systemd-networkd systemd-resolved systemd-timesyncd systemd-udevd)
> STATUS: NOT VULNERABLE (Mitigation: Speculative Store Bypass disabled via prctl and seccomp)

CVE-2018-3615 aka Foreshadow (SGX), L1 terminal fault
* CPU microcode mitigates the vulnerability: N/A
> STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

CVE-2018-3620 aka Foreshadow-NG (OS), L1 terminal fault
* Mitigated according to the /sys interface: YES (Mitigation: PTE Inversion; VMX: conditional cache␣
→˓flushes, SMT disabled)
* Kernel supports PTE inversion: YES (found in kernel image)

(continues on next page)

146 Chapter 2. VPP Performance

CSIT REPORT, Release rls19082

(continued from previous page)
* PTE inversion enabled and active: YES
> STATUS: NOT VULNERABLE (Mitigation: PTE Inversion; VMX: conditional cache flushes, SMT disabled)

CVE-2018-3646 aka Foreshadow-NG (VMM), L1 terminal fault
* Information from the /sys interface: Mitigation: PTE Inversion; VMX: conditional cache flushes,␣
→˓SMT disabled
* This system is a host running a hypervisor: NO
* Mitigation 1 (KVM)
* EPT is disabled: NO

* Mitigation 2
* L1D flush is supported by kernel: YES (found flush_l1d in /proc/cpuinfo)
* L1D flush enabled: YES (conditional flushes)
* Hardware-backed L1D flush supported: YES (performance impact of the mitigation will be greatly␣

→˓reduced)
* Hyper-Threading (SMT) is enabled: NO

> STATUS: NOT VULNERABLE (this system is not running a hypervisor)

CVE-2018-12126 aka Fallout, microarchitectural store buffer data sampling (MSBDS)
* Mitigated according to the /sys interface: YES (Mitigation: Clear CPU buffers; SMT disabled)
* Kernel supports using MD_CLEAR mitigation: YES (md_clear found in /proc/cpuinfo)
* Kernel mitigation is enabled and active: YES
* SMT is either mitigated or disabled: YES
> STATUS: NOT VULNERABLE (Your microcode and kernel are both up to date for this mitigation, and␣
→˓mitigation is enabled)

CVE-2018-12130 aka ZombieLoad, microarchitectural fill buffer data sampling (MFBDS)
* Mitigated according to the /sys interface: YES (Mitigation: Clear CPU buffers; SMT disabled)
* Kernel supports using MD_CLEAR mitigation: YES (md_clear found in /proc/cpuinfo)
* Kernel mitigation is enabled and active: YES
* SMT is either mitigated or disabled: YES
> STATUS: NOT VULNERABLE (Your microcode and kernel are both up to date for this mitigation, and␣
→˓mitigation is enabled)

CVE-2018-12127 aka RIDL, microarchitectural load port data sampling (MLPDS)
* Mitigated according to the /sys interface: YES (Mitigation: Clear CPU buffers; SMT disabled)
* Kernel supports using MD_CLEAR mitigation: YES (md_clear found in /proc/cpuinfo)
* Kernel mitigation is enabled and active: YES
* SMT is either mitigated or disabled: YES
> STATUS: NOT VULNERABLE (Your microcode and kernel are both up to date for this mitigation, and␣
→˓mitigation is enabled)

CVE-2019-11091 aka RIDL, microarchitectural data sampling uncacheable memory (MDSUM)
* Mitigated according to the /sys interface: YES (Mitigation: Clear CPU buffers; SMT disabled)
* Kernel supports using MD_CLEAR mitigation: YES (md_clear found in /proc/cpuinfo)
* Kernel mitigation is enabled and active: YES
* SMT is either mitigated or disabled: YES
> STATUS: NOT VULNERABLE (Your microcode and kernel are both up to date for this mitigation, and␣
→˓mitigation is enabled)

CVE-2019-11135 aka ZombieLoad V2, TSX Asynchronous Abort (TAA)
* Mitigated according to the /sys interface: YES (Not affected)
* TAA mitigation is supported by kernel: YES (found tsx_async_abort in kernel image)
* TAA mitigation enabled and active: NO
> STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

CVE-2018-12207 aka No eXcuses, iTLB Multihit, machine check exception on page size changes (MCEPSC)
* Mitigated according to the /sys interface: YES (KVM: Mitigation: Split huge pages)
* This system is a host running a hypervisor: NO
* iTLB Multihit mitigation is supported by kernel: YES (found itlb_multihit in kernel image)
* iTLB Multihit mitigation enabled and active: YES (KVM: Mitigation: Split huge pages)
> STATUS: NOT VULNERABLE (this system is not running a hypervisor)

(continues on next page)

2.6. Test Environment 147

CSIT REPORT, Release rls19082

(continued from previous page)
> SUMMARY: CVE-2017-5753:OK CVE-2017-5715:OK CVE-2017-5754:OK CVE-2018-3640:OK CVE-2018-3639:OK CVE-
→˓2018-3615:OK CVE-2018-3620:OK CVE-2018-3646:OK CVE-2018-12126:OK CVE-2018-12130:OK CVE-2018-
→˓12127:OK CVE-2019-11091:OK CVE-2019-11135:OK CVE-2018-12207:OK

2.6.7 Calibration Data - Denverton

Following sections include sample calibration data measured on Denverton server at Intel SH labs.
A 2-Node Atom Denverton testing took place at Intel Corporation carefully adhering to FD.io CSIT bestpractices.
Linux cmdline

$ cat /proc/cmdline
BOOT_IMAGE=/boot/vmlinuz-4.15.0-36-generic root=UUID=d3cfffd0-1e77-423a-a53a-a117199b6025 ro intel_
→˓iommu=on iommu=pt isolcpus=1-11 nohz_full=1-11 rcu_nocbs=1-11 default_hugepagesz=1G hugepagesz=1G␣
→˓hugepages=8 intel_pstate=disable nmi_watchdog=0 numa_balancing=disable tsc=reliable nosoftlockup␣
→˓quiet splash vt.handoff=7

Linux uname

$ uname -a
Linux 4.15.0-36-generic #39~16.04.1-Ubuntu SMP Tue Sep 25 08:59:23 UTC 2018 x86_64 x86_64 x86_64␣
→˓GNU/Linux

System-level Core Jitter

$ sudo taskset -c 2 /home/testuser/pma_tools/jitter/jitter -c 2 -i 20
Linux Jitter testing program version 1.9
Iterations=20
The pragram will execute a dummy function 80000 times
Display is updated every 20000 displayUpdate intervals
Thread affinity will be set to core_id:2
Timings are in CPU Core cycles
Inst_Min: Minimum Excution time during the display update interval(default is ~1 second)
Inst_Max: Maximum Excution time during the display update interval(default is ~1 second)
Inst_jitter: Jitter in the Excution time during rhe display update interval. This is the value of␣
→˓interest
last_Exec: The Excution time of last iteration just before the display update
Abs_Min: Absolute Minimum Excution time since the program started or statistics were reset
Abs_Max: Absolute Maximum Excution time since the program started or statistics were reset
tmp: Cumulative value calcualted by the dummy function
Interval: Time interval between the display updates in Core Cycles
Sample No: Sample number

Inst_Min Inst_Max Inst_jitter last_Exec Abs_min Abs_max tmp Interval ␣
→˓Sample No

177530 196100 18570 177530 177530 196100 4156751872 3556820054 ␣
→˓1

177530 200784 23254 177530 177530 200784 321060864 3556897644 ␣
→˓2

177530 196346 18816 177530 177530 200784 780337152 3556918674 ␣
→˓3

(continues on next page)

148 Chapter 2. VPP Performance

CSIT REPORT, Release rls19082

(continued from previous page)
177530 195962 18432 177530 177530 200784 1239613440 3556847928 ␣

→˓4
177530 195960 18430 177530 177530 200784 1698889728 3556860214 ␣

→˓5
177530 198824 21294 177530 177530 200784 2158166016 3556854934 ␣

→˓6
177530 198522 20992 177530 177530 200784 2617442304 3556862410 ␣

→˓7
177530 196362 18832 177530 177530 200784 3076718592 3556851636 ␣

→˓8
177530 199114 21584 177530 177530 200784 3535994880 3556870846 ␣

→˓9
177530 197194 19664 177530 177530 200784 3995271168 3556933584 ␣

→˓10
177530 198272 20742 177536 177530 200784 159580160 3556869044 ␣

→˓11
177530 197586 20056 177530 177530 200784 618856448 3556903482 ␣

→˓12
177530 196072 18542 177530 177530 200784 1078132736 3556825540 ␣

→˓13
177530 196354 18824 177530 177530 200784 1537409024 3556881664 ␣

→˓14
177530 195906 18376 177530 177530 200784 1996685312 3556839924 ␣

→˓15
177530 199066 21536 177530 177530 200784 2455961600 3556860220 ␣

→˓16
177530 196968 19438 177530 177530 200784 2915237888 3556871890 ␣

→˓17
177530 195896 18366 177530 177530 200784 3374514176 3556855338 ␣

→˓18
177530 196020 18490 177530 177530 200784 3833790464 3556839820 ␣

→˓19
177530 196030 18500 177530 177530 200784 4293066752 3556889196 ␣

→˓20

Memory Bandwidth

$ sudo /home/testuser/mlc --bandwidth_matrix
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --bandwidth_matrix

Using buffer size of 100.000MB/thread for reads and an additional 100.000MB/thread for writes
Measuring Memory Bandwidths between nodes within system
Bandwidths are in MB/sec (1 MB/sec = 1,000,000 Bytes/sec)
Using all the threads from each core if Hyper-threading is enabled
Using Read-only traffic type

Memory node
Socket 0

0 28157.2

$ sudo /home/testuser/mlc --peak_injection_bandwidth
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --peak_injection_bandwidth

Using buffer size of 100.000MB/thread for reads and an additional 100.000MB/thread for writes

Measuring Peak Injection Memory Bandwidths for the system
Bandwidths are in MB/sec (1 MB/sec = 1,000,000 Bytes/sec)
Using all the threads from each core if Hyper-threading is enabled

(continues on next page)

2.6. Test Environment 149

CSIT REPORT, Release rls19082

(continued from previous page)
Using traffic with the following read-write ratios
ALL Reads : 28150.0
3:1 Reads-Writes : 27425.0
2:1 Reads-Writes : 27565.4
1:1 Reads-Writes : 27489.3
Stream-triad like: 26878.2

$ sudo /home/testuser/mlc --max_bandwidth
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --max_bandwidth

Using buffer size of 100.000MB/thread for reads and an additional 100.000MB/thread for writes

Measuring Maximum Memory Bandwidths for the system
Will take several minutes to complete as multiple injection rates will be tried to get the best␣
→˓bandwidth
Bandwidths are in MB/sec (1 MB/sec = 1,000,000 Bytes/sec)
Using all the threads from each core if Hyper-threading is enabled
Using traffic with the following read-write ratios
ALL Reads : 30032.40
3:1 Reads-Writes : 27450.88
2:1 Reads-Writes : 27567.46
1:1 Reads-Writes : 27501.90
Stream-triad like: 27124.82

Memory Latency

$ sudo /home/testuser/mlc --latency_matrix
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --latency_matrix

Using buffer size of 2000.000MB
Intel(R) Memory Latency Checker - v3.5
Measuring idle latencies (in ns)...

Memory node
Socket 0

0 93.1

$ sudo /home/testuser/mlc --idle_latency
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --idle_latency

Using buffer size of 200.000MB
Each iteration took 186.7 core clocks (93.4 ns)

$ sudo /home/testuser/mlc --loaded_latency
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --loaded_latency

Using buffer size of 100.000MB/thread for reads and an additional 100.000MB/thread for writes

Measuring Loaded Latencies for the system
Using all the threads from each core if Hyper-threading is enabled
Using Read-only traffic type
Inject Latency Bandwidth
Delay (ns) MB/sec
==========================
00000 135.35 27186.0

(continues on next page)

150 Chapter 2. VPP Performance

CSIT REPORT, Release rls19082

(continued from previous page)
00002 135.47 27176.9
00008 134.97 27063.3
00015 134.41 26825.6
00050 139.83 28419.1
00100 124.28 22616.4
00200 109.40 14139.8
00300 104.56 10275.1
00400 102.02 8120.0
00500 100.38 6751.4
00700 98.30 5124.9
01000 96.56 3852.7
01300 95.65 3149.0
01700 95.06 2585.4
02500 94.43 1988.8
03500 94.16 1621.1
05000 93.95 1343.1
09000 93.65 1052.6
20000 93.43 851.7

L1/L2/LLC Latency

$ sudo /home/testuser/mlc --c2c_latency
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --c2c_latency

Measuring cache-to-cache transfer latency (in ns)...
Local Socket L2->L2 HIT latency 8.8
Local Socket L2->L2 HITM latency 8.8

Spectre and Meltdown Checks

Following section displays the output of a running shell script to tell if system is vulnerable against theseveral “speculative execution” CVEs that were made public in 2018. Script is available on Spectre &Meltdown Checker Github68.
Spectre and Meltdown mitigation detection tool v0.42
Checking for vulnerabilities on current system
Kernel is Linux 4.15.0-51-generic #55-Ubuntu SMP Wed May 15 14:27:21 UTC 2019 x86_64
CPU is Intel(R) Atom(TM) CPU C3858 @ 2.00GHz

Hardware check
* Hardware support (CPU microcode) for mitigation techniques

* Indirect Branch Restricted Speculation (IBRS)
* SPEC_CTRL MSR is available: YES
* CPU indicates IBRS capability: YES (SPEC_CTRL feature bit)

* Indirect Branch Prediction Barrier (IBPB)
* PRED_CMD MSR is available: YES
* CPU indicates IBPB capability: YES (SPEC_CTRL feature bit)

* Single Thread Indirect Branch Predictors (STIBP)
* SPEC_CTRL MSR is available: YES
* CPU indicates STIBP capability: YES (Intel STIBP feature bit)

* Speculative Store Bypass Disable (SSBD)
* CPU indicates SSBD capability: YES (Intel SSBD)

* L1 data cache invalidation
* FLUSH_CMD MSR is available: NO
* CPU indicates L1D flush capability: NO

(continues on next page)
68 https://github.com/speed47/spectre-meltdown-checker

2.6. Test Environment 151

https://github.com/speed47/spectre-meltdown-checker
https://github.com/speed47/spectre-meltdown-checker

CSIT REPORT, Release rls19082

(continued from previous page)
* Microarchitecture Data Sampling

* VERW instruction is available: YES (MD_CLEAR feature bit)
* Enhanced IBRS (IBRS_ALL)

* CPU indicates ARCH_CAPABILITIES MSR availability: YES
* ARCH_CAPABILITIES MSR advertises IBRS_ALL capability: NO

* CPU explicitly indicates not being vulnerable to Meltdown/L1TF (RDCL_NO): YES
* CPU explicitly indicates not being vulnerable to Variant 4 (SSB_NO): NO
* CPU/Hypervisor indicates L1D flushing is not necessary on this system: YES
* Hypervisor indicates host CPU might be vulnerable to RSB underflow (RSBA): NO
* CPU explicitly indicates not being vulnerable to Microarchitectural Data Sampling (MDS_NO): YES
* CPU supports Software Guard Extensions (SGX): NO
* CPU microcode is known to cause stability problems: NO (model 0x5f family 0x6 stepping 0x1␣

→˓ucode 0x2e cpuid 0x506f1)
* CPU microcode is the latest known available version: awk: fatal: cannot open file `bash for␣

→˓reading (No such file or directory)
UNKNOWN (latest microcode version for your CPU model is unknown)
* CPU vulnerability to the speculative execution attack variants

* Vulnerable to CVE-2017-5753 (Spectre Variant 1, bounds check bypass): YES
* Vulnerable to CVE-2017-5715 (Spectre Variant 2, branch target injection): YES
* Vulnerable to CVE-2017-5754 (Variant 3, Meltdown, rogue data cache load): NO
* Vulnerable to CVE-2018-3640 (Variant 3a, rogue system register read): YES
* Vulnerable to CVE-2018-3639 (Variant 4, speculative store bypass): YES
* Vulnerable to CVE-2018-3615 (Foreshadow (SGX), L1 terminal fault): NO
* Vulnerable to CVE-2018-3620 (Foreshadow-NG (OS), L1 terminal fault): NO
* Vulnerable to CVE-2018-3646 (Foreshadow-NG (VMM), L1 terminal fault): NO
* Vulnerable to CVE-2018-12126 (Fallout, microarchitectural store buffer data sampling (MSBDS)):␣

→˓NO
* Vulnerable to CVE-2018-12130 (ZombieLoad, microarchitectural fill buffer data sampling␣

→˓(MFBDS)): NO
* Vulnerable to CVE-2018-12127 (RIDL, microarchitectural load port data sampling (MLPDS)): NO
* Vulnerable to CVE-2019-11091 (RIDL, microarchitectural data sampling uncacheable memory␣

→˓(MDSUM)): NO

CVE-2017-5753 aka Spectre Variant 1, bounds check bypass
* Mitigated according to the /sys interface: YES (Mitigation: __user pointer sanitization)
* Kernel has array_index_mask_nospec: YES (1 occurrence(s) found of x86 64 bits array_index_mask_
→˓nospec())
* Kernel has the Red Hat/Ubuntu patch: NO
* Kernel has mask_nospec64 (arm64): NO
> STATUS: NOT VULNERABLE (Mitigation: __user pointer sanitization)

CVE-2017-5715 aka Spectre Variant 2, branch target injection
* Mitigated according to the /sys interface: YES (Mitigation: Full generic retpoline, IBPB:␣
→˓conditional, IBRS_FW, STIBP: disabled, RSB filling)
* Mitigation 1

* Kernel is compiled with IBRS support: YES
* IBRS enabled and active: YES (for firmware code only)

* Kernel is compiled with IBPB support: YES
* IBPB enabled and active: YES

* Mitigation 2
* Kernel has branch predictor hardening (arm): NO
* Kernel compiled with retpoline option: YES

* Kernel compiled with a retpoline-aware compiler: YES (kernel reports full retpoline␣
→˓compilation)
> STATUS: NOT VULNERABLE (Full retpoline + IBPB are mitigating the vulnerability)

CVE-2017-5754 aka Variant 3, Meltdown, rogue data cache load
* Mitigated according to the /sys interface: YES (Not affected)
* Kernel supports Page Table Isolation (PTI): YES

* PTI enabled and active: UNKNOWN (dmesg truncated, please reboot and relaunch this script)
* Reduced performance impact of PTI: NO (PCID/INVPCID not supported, performance impact of PTI␣

→˓will be significant) (continues on next page)

152 Chapter 2. VPP Performance

CSIT REPORT, Release rls19082

(continued from previous page)
* Running as a Xen PV DomU: NO
> STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

CVE-2018-3640 aka Variant 3a, rogue system register read
* CPU microcode mitigates the vulnerability: YES
> STATUS: NOT VULNERABLE (your CPU microcode mitigates the vulnerability)

CVE-2018-3639 aka Variant 4, speculative store bypass
* Mitigated according to the /sys interface: YES (Mitigation: Speculative Store Bypass disabled via␣
→˓prctl and seccomp)
* Kernel supports disabling speculative store bypass (SSB): YES (found in /proc/self/status)
* SSB mitigation is enabled and active: YES (per-thread through prctl)
* SSB mitigation currently active for selected processes: YES (systemd-journald systemd-logind␣
→˓systemd-networkd systemd-resolved systemd-timesyncd systemd-udevd)
> STATUS: NOT VULNERABLE (Mitigation: Speculative Store Bypass disabled via prctl and seccomp)

CVE-2018-3615 aka Foreshadow (SGX), L1 terminal fault
* CPU microcode mitigates the vulnerability: N/A
> STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

CVE-2018-3620 aka Foreshadow-NG (OS), L1 terminal fault
* Mitigated according to the /sys interface: YES (Not affected)
* Kernel supports PTE inversion: YES (found in kernel image)
* PTE inversion enabled and active: NO
> STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

CVE-2018-3646 aka Foreshadow-NG (VMM), L1 terminal fault
* Information from the /sys interface: Not affected
* This system is a host running a hypervisor: NO
* Mitigation 1 (KVM)

* EPT is disabled: NO
* Mitigation 2

* L1D flush is supported by kernel: YES (found flush_l1d in kernel image)
* L1D flush enabled: NO
* Hardware-backed L1D flush supported: NO (flush will be done in software, this is slower)
* Hyper-Threading (SMT) is enabled: NO

> STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

CVE-2018-12126 aka Fallout, microarchitectural store buffer data sampling (MSBDS)
* Mitigated according to the /sys interface: YES (Not affected)
* Kernel supports using MD_CLEAR mitigation: YES (md_clear found in /proc/cpuinfo)
* Kernel mitigation is enabled and active: NO
* SMT is either mitigated or disabled: NO
> STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

CVE-2018-12130 aka ZombieLoad, microarchitectural fill buffer data sampling (MFBDS)
* Mitigated according to the /sys interface: YES (Not affected)
* Kernel supports using MD_CLEAR mitigation: YES (md_clear found in /proc/cpuinfo)
* Kernel mitigation is enabled and active: NO
* SMT is either mitigated or disabled: NO
> STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

CVE-2018-12127 aka RIDL, microarchitectural load port data sampling (MLPDS)
* Mitigated according to the /sys interface: YES (Not affected)
* Kernel supports using MD_CLEAR mitigation: YES (md_clear found in /proc/cpuinfo)
* Kernel mitigation is enabled and active: NO
* SMT is either mitigated or disabled: NO
> STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

CVE-2019-11091 aka RIDL, microarchitectural data sampling uncacheable memory (MDSUM)
* Mitigated according to the /sys interface: YES (Not affected)

(continues on next page)

2.6. Test Environment 153

CSIT REPORT, Release rls19082

(continued from previous page)
* Kernel supports using MD_CLEAR mitigation: YES (md_clear found in /proc/cpuinfo)
* Kernel mitigation is enabled and active: NO
* SMT is either mitigated or disabled: NO
> STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

> SUMMARY: CVE-2017-5753:OK CVE-2017-5715:OK CVE-2017-5754:OK CVE-2018-3640:OK CVE-2018-3639:OK CVE-
→˓2018-3615:OK CVE-2018-3620:OK CVE-2018-3646:OK CVE-2018-12126:OK CVE-2018-12130:OK CVE-2018-
→˓12127:OK CVE-2019-11091:OK

2.6.8 Calibration Data - TaiShan

Following sections include sample calibration data measured on s17-t33-sut1 server running in one ofthe Cortex-A72 testbeds.
Calibration data obtained from all other servers in TaiShan testbeds shows the same or similar values.
Linux cmdline

$ cat /proc/cmdline
BOOT_IMAGE=/boot/vmlinuz-4.15.0-54-generic root=/dev/mapper/huawei--1--vg-root ro isolcpus=1-15,17-
→˓31,33-47,49-63 nohz_full=1-15 17-31,33-47,49-63 rcu_nocbs=1-15 17-31,33-47,49-63 intel_
→˓iommu=on nmi_watchdog=0 audit=0 nosoftlockup processor.max_cstate=1 console=ttyAMA0,115200n8

Linux uname

$ uname -a
Linux s17-t33-sut1 4.15.0-54-generic #58-Ubuntu SMP Mon Jun 24 10:56:40 UTC 2019 aarch64 aarch64␣
→˓aarch64 GNU/Linux

System-level Core Jitter

$ sudo taskset -c 3 /home/testuser/pma_tools/jitter/jitter -i 20
Linux Jitter testing program version 1.9
Iterations=30
The pragram will execute a dummy function 80000 times
Display is updated every 20000 displayUpdate intervals
Thread affinity will be set to core_id:7
Timings are in CPU Core cycles
Inst_Min: Minimum Excution time during the display update interval(default is ~1 second)
Inst_Max: Maximum Excution time during the display update interval(default is ~1 second)
Inst_jitter: Jitter in the Excution time during rhe display update interval. This is the value of␣
→˓interest
last_Exec: The Excution time of last iteration just before the display update
Abs_Min: Absolute Minimum Excution time since the program started or statistics were reset
Abs_Max: Absolute Maximum Excution time since the program started or statistics were reset
tmp: Cumulative value calcualted by the dummy function
Interval: Time interval between the display updates in Core Cycles
Sample No: Sample number

Inst_Min Inst_Max Inst_jitter last_Exec Abs_min Abs_max tmp Interval ␣
→˓Sample No

160022 172254 12232 160042 160022 172254 1903230976 3204401362 ␣
→˓1

160022 173148 13126 160044 160022 173148 814809088 3204619316 ␣
→˓2

(continues on next page)

154 Chapter 2. VPP Performance

CSIT REPORT, Release rls19082

(continued from previous page)
160022 169460 9438 160044 160022 173148 4021354496 3204391306 ␣

→˓3
160024 170270 10246 160044 160022 173148 2932932608 3204385830 ␣

→˓4
160022 169660 9638 160044 160022 173148 1844510720 3204387290 ␣

→˓5
160022 169410 9388 160040 160022 173148 756088832 3204375832 ␣

→˓6
160022 169012 8990 160042 160022 173148 3962634240 3204378924 ␣

→˓7
160022 169556 9534 160044 160022 173148 2874212352 3204374882 ␣

→˓8
160022 171684 11662 160042 160022 173148 1785790464 3204394596 ␣

→˓9
160022 171546 11524 160024 160022 173148 697368576 3204602774 ␣

→˓10
160022 169248 9226 160042 160022 173148 3903913984 3204401676 ␣

→˓11
160022 168458 8436 160042 160022 173148 2815492096 3204256350 ␣

→˓12
160022 169574 9552 160044 160022 173148 1727070208 3204278116 ␣

→˓13
160022 169352 9330 160044 160022 173148 638648320 3204327234 ␣

→˓14
160022 169100 9078 160044 160022 173148 3845193728 3204388132 ␣

→˓15
160022 169338 9316 160042 160022 173148 2756771840 3204380724 ␣

→˓16
160022 170828 10806 160046 160022 173148 1668349952 3204430452 ␣

→˓17
160022 173162 13140 160026 160022 173162 579928064 3204611318 ␣

→˓18
160022 170482 10460 160042 160022 173162 3786473472 3204389896 ␣

→˓19
160024 170704 10680 160044 160022 173162 2698051584 3204422126 ␣

→˓20
160024 169302 9278 160044 160022 173162 1609629696 3204397334 ␣

→˓21
160022 171848 11826 160044 160022 173162 521207808 3204389818 ␣

→˓22
160022 169438 9416 160042 160022 173162 3727753216 3204395382 ␣

→˓23
160022 169312 9290 160042 160022 173162 2639331328 3204371202 ␣

→˓24
160022 171368 11346 160044 160022 173162 1550909440 3204440464 ␣

→˓25
160022 171998 11976 160042 160022 173162 462487552 3204609440 ␣

→˓26
160022 169740 9718 160046 160022 173162 3669032960 3204405826 ␣

→˓27
160022 169610 9588 160044 160022 173162 2580611072 3204390608 ␣

→˓28
160022 169254 9232 160044 160022 173162 1492189184 3204399760 ␣

→˓29
160022 169386 9364 160046 160022 173162 403767296 3204417762 ␣

→˓30

2.6. Test Environment 155

CSIT REPORT, Release rls19082

Spectre and Meltdown Checks

Following section displays the output of a running shell script to tell if system is vulnerable against theseveral “speculative execution” CVEs that were made public in 2018. Script is available on Spectre &Meltdown Checker Github69.
Spectre and Meltdown mitigation detection tool v0.43

awk: cannot open bash (No such file or directory)
Checking for vulnerabilities on current system
Kernel is Linux 4.15.0-23-generic #25-Ubuntu SMP Wed May 23 18:02:16 UTC 2018 x86_64
CPU is Intel(R) Xeon(R) Platinum 8180 CPU @ 2.50GHz

Hardware check
* Hardware support (CPU microcode) for mitigation techniques
* Indirect Branch Restricted Speculation (IBRS)

* SPEC_CTRL MSR is available: YES
* CPU indicates IBRS capability: YES (SPEC_CTRL feature bit)

* Indirect Branch Prediction Barrier (IBPB)
* PRED_CMD MSR is available: YES
* CPU indicates IBPB capability: YES (SPEC_CTRL feature bit)

* Single Thread Indirect Branch Predictors (STIBP)
* SPEC_CTRL MSR is available: YES
* CPU indicates STIBP capability: YES (Intel STIBP feature bit)

* Speculative Store Bypass Disable (SSBD)
* CPU indicates SSBD capability: NO

* L1 data cache invalidation
* FLUSH_CMD MSR is available: NO
* CPU indicates L1D flush capability: NO

* Microarchitectural Data Sampling
* VERW instruction is available: NO

* Enhanced IBRS (IBRS_ALL)
* CPU indicates ARCH_CAPABILITIES MSR availability: NO
* ARCH_CAPABILITIES MSR advertises IBRS_ALL capability: NO

* CPU explicitly indicates not being vulnerable to Meltdown/L1TF (RDCL_NO): NO
* CPU explicitly indicates not being vulnerable to Variant 4 (SSB_NO): NO
* CPU/Hypervisor indicates L1D flushing is not necessary on this system: NO
* Hypervisor indicates host CPU might be vulnerable to RSB underflow (RSBA): NO
* CPU explicitly indicates not being vulnerable to Microarchitectural Data Sampling (MDS_NO): NO
* CPU explicitly indicates not being vulnerable to TSX Asynchronous Abort (TAA_NO): NO
* CPU explicitly indicates not being vulnerable to iTLB Multihit (PSCHANGE_MSC_NO): NO
* CPU explicitly indicates having MSR for TSX control (TSX_CTRL_MSR): NO
* CPU supports Transactional Synchronization Extensions (TSX): YES (RTM feature bit)
* CPU supports Software Guard Extensions (SGX): NO
* CPU microcode is known to cause stability problems: NO (model 0x55 family 0x6 stepping 0x4␣

→˓ucode 0x2000043 cpuid 0x50654)
* CPU microcode is the latest known available version: awk: cannot open bash (No such file or␣

→˓directory)
UNKNOWN (latest microcode version for your CPU model is unknown)
* CPU vulnerability to the speculative execution attack variants

* Vulnerable to CVE-2017-5753 (Spectre Variant 1, bounds check bypass): YES
* Vulnerable to CVE-2017-5715 (Spectre Variant 2, branch target injection): YES
* Vulnerable to CVE-2017-5754 (Variant 3, Meltdown, rogue data cache load): YES
* Vulnerable to CVE-2018-3640 (Variant 3a, rogue system register read): YES
* Vulnerable to CVE-2018-3639 (Variant 4, speculative store bypass): YES
* Vulnerable to CVE-2018-3615 (Foreshadow (SGX), L1 terminal fault): NO
* Vulnerable to CVE-2018-3620 (Foreshadow-NG (OS), L1 terminal fault): YES
* Vulnerable to CVE-2018-3646 (Foreshadow-NG (VMM), L1 terminal fault): YES
* Vulnerable to CVE-2018-12126 (Fallout, microarchitectural store buffer data sampling (MSBDS)):␣

→˓YES
* Vulnerable to CVE-2018-12130 (ZombieLoad, microarchitectural fill buffer data sampling␣

→˓(MFBDS)): YES (continues on next page)
69 https://github.com/speed47/spectre-meltdown-checker

156 Chapter 2. VPP Performance

https://github.com/speed47/spectre-meltdown-checker
https://github.com/speed47/spectre-meltdown-checker

CSIT REPORT, Release rls19082

(continued from previous page)
* Vulnerable to CVE-2018-12127 (RIDL, microarchitectural load port data sampling (MLPDS)): YES
* Vulnerable to CVE-2019-11091 (RIDL, microarchitectural data sampling uncacheable memory␣

→˓(MDSUM)): YES
* Vulnerable to CVE-2019-11135 (ZombieLoad V2, TSX Asynchronous Abort (TAA)): YES
* Vulnerable to CVE-2018-12207 (No eXcuses, iTLB Multihit, machine check exception on page size␣

→˓changes (MCEPSC)): YES

CVE-2017-5753 aka Spectre Variant 1, bounds check bypass
* Mitigated according to the /sys interface: YES (Mitigation: __user pointer sanitization)
* Kernel has array_index_mask_nospec: YES (1 occurrence(s) found of x86 64 bits array_index_mask_
→˓nospec())
* Kernel has the Red Hat/Ubuntu patch: NO
* Kernel has mask_nospec64 (arm64): NO
> STATUS: NOT VULNERABLE (Mitigation: __user pointer sanitization)

CVE-2017-5715 aka Spectre Variant 2, branch target injection
* Mitigated according to the /sys interface: YES (Mitigation: Full generic retpoline, IBPB, IBRS_FW)
* Mitigation 1

* Kernel is compiled with IBRS support: YES
* IBRS enabled and active: YES (for firmware code only)

* Kernel is compiled with IBPB support: YES
* IBPB enabled and active: YES

* Mitigation 2
* Kernel has branch predictor hardening (arm): NO
* Kernel compiled with retpoline option: YES

* Kernel compiled with a retpoline-aware compiler: YES (kernel reports full retpoline␣
→˓compilation)
* Kernel supports RSB filling: YES

> STATUS: NOT VULNERABLE (Full retpoline + IBPB are mitigating the vulnerability)

CVE-2017-5754 aka Variant 3, Meltdown, rogue data cache load
* Mitigated according to the /sys interface: YES (Mitigation: PTI)
* Kernel supports Page Table Isolation (PTI): YES

* PTI enabled and active: YES
* Reduced performance impact of PTI: YES (CPU supports INVPCID, performance impact of PTI will be␣

→˓greatly reduced)
* Running as a Xen PV DomU: NO
> STATUS: NOT VULNERABLE (Mitigation: PTI)

CVE-2018-3640 aka Variant 3a, rogue system register read
* CPU microcode mitigates the vulnerability: NO
> STATUS: VULNERABLE (an up-to-date CPU microcode is needed to mitigate this vulnerability)

CVE-2018-3639 aka Variant 4, speculative store bypass
* Mitigated according to the /sys interface: NO (Vulnerable)
* Kernel supports disabling speculative store bypass (SSB): YES (found in /proc/self/status)
* SSB mitigation is enabled and active: NO
> STATUS: VULNERABLE (Your CPU doesnt support SSBD)

CVE-2018-3615 aka Foreshadow (SGX), L1 terminal fault
* CPU microcode mitigates the vulnerability: N/A
> STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

CVE-2018-3620 aka Foreshadow-NG (OS), L1 terminal fault
* Kernel supports PTE inversion: NO
* PTE inversion enabled and active: UNKNOWN (sysfs interface not available)
> STATUS: VULNERABLE (Your kernel doesnt support PTE inversion, update it)

CVE-2018-3646 aka Foreshadow-NG (VMM), L1 terminal fault
* This system is a host running a hypervisor: NO
* Mitigation 1 (KVM)

(continues on next page)

2.6. Test Environment 157

CSIT REPORT, Release rls19082

(continued from previous page)
* EPT is disabled: NO

* Mitigation 2
* L1D flush is supported by kernel: NO
* L1D flush enabled: UNKNOWN (cant find or read /sys/devices/system/cpu/vulnerabilities/l1tf)
* Hardware-backed L1D flush supported: NO (flush will be done in software, this is slower)
* Hyper-Threading (SMT) is enabled: YES

> STATUS: NOT VULNERABLE (this system is not running a hypervisor)

CVE-2018-12126 aka Fallout, microarchitectural store buffer data sampling (MSBDS)
* Kernel supports using MD_CLEAR mitigation: NO
> STATUS: VULNERABLE (Neither your kernel or your microcode support mitigation, upgrade both to␣
→˓mitigate the vulnerability)

CVE-2018-12130 aka ZombieLoad, microarchitectural fill buffer data sampling (MFBDS)
* Kernel supports using MD_CLEAR mitigation: NO
> STATUS: VULNERABLE (Neither your kernel or your microcode support mitigation, upgrade both to␣
→˓mitigate the vulnerability)

CVE-2018-12127 aka RIDL, microarchitectural load port data sampling (MLPDS)
* Kernel supports using MD_CLEAR mitigation: NO
> STATUS: VULNERABLE (Neither your kernel or your microcode support mitigation, upgrade both to␣
→˓mitigate the vulnerability)

CVE-2019-11091 aka RIDL, microarchitectural data sampling uncacheable memory (MDSUM)
* Kernel supports using MD_CLEAR mitigation: NO
> STATUS: VULNERABLE (Neither your kernel or your microcode support mitigation, upgrade both to␣
→˓mitigate the vulnerability)

CVE-2019-11135 aka ZombieLoad V2, TSX Asynchronous Abort (TAA)
* TAA mitigation is supported by kernel: NO
* TAA mitigation enabled and active: NO (tsx_async_abort not found in sysfs hierarchy)
> STATUS: VULNERABLE (Your kernel doesnt support TAA mitigation, update it)

CVE-2018-12207 aka No eXcuses, iTLB Multihit, machine check exception on page size changes (MCEPSC)
* This system is a host running a hypervisor: NO
* iTLB Multihit mitigation is supported by kernel: NO
* iTLB Multihit mitigation enabled and active: NO (itlb_multihit not found in sysfs hierarchy)
> STATUS: NOT VULNERABLE (this system is not running a hypervisor)

> SUMMARY: CVE-2017-5753:OK CVE-2017-5715:OK CVE-2017-5754:OK CVE-2018-3640:KO CVE-2018-3639:KO CVE-
→˓2018-3615:OK CVE-2018-3620:KO CVE-2018-3646:OK CVE-2018-12126:KO CVE-2018-12130:KO CVE-2018-
→˓12127:KO CVE-2019-11091:KO CVE-2019-11135:KO CVE-2018-12207:OK

2.6.9 SUT Settings - Linux

System provisioning is done by combination of PXE boot unattented install and Ansible70 described inCSIT Testbed Setup71.
Below a subset of the running configuration:

1. Ubuntu 18.04.x LTS
$ lsb_release -a
No LSB modules are available.
Distributor ID: Ubuntu
Description: Ubuntu 18.04.3 LTS
Release: 18.04
Codename: bionic

70 https://www.ansible.com71 https://git.fd.io/csit/tree/resources/tools/testbed-setup/README.md?h=rls1908_2

158 Chapter 2. VPP Performance

https://www.ansible.com
https://git.fd.io/csit/tree/resources/tools/testbed-setup/README.md?h=rls1908_2

CSIT REPORT, Release rls19082

Linux Boot Parameters

• isolcpus=<cpu number>-<cpu number> used for all cpu cores apart from first core of each socketused for running VPP worker threads and Qemu/LXC processes https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
• intel_pstate=disable - [X86] Do not enable intel_pstate as the default scaling driver for the sup-ported processors. Intel P-State driver decide what P-state (CPU core power state) to use basedon requesting policy from the cpufreq core. [X86 - Either 32-bit or 64-bit x86] https://www.kernel.org/doc/Documentation/cpu-freq/intel-pstate.txt
• nohz_full=<cpu number>-<cpu number> - [KNL,BOOT] In kernels built with CON-FIG_NO_HZ_FULL=y, set the specified list of CPUs whose tick will be stopped wheneverpossible. The boot CPU will be forced outside the range to maintain the timekeeping. The CPUsin this range must also be included in the rcu_nocbs= set. Specifies the adaptive-ticks CPU cores,causing kernel to avoid sending scheduling-clock interrupts to listed cores as long as they have asingle runnable task. [KNL - Is a kernel start-up parameter, SMP - The kernel is an SMP kernel].https://www.kernel.org/doc/Documentation/timers/NO_HZ.txt
• rcu_nocbs - [KNL] In kernels built with CONFIG_RCU_NOCB_CPU=y, set the specified list of CPUsto be no-callback CPUs, that never queue RCU callbacks (read-copy update). https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
• numa_balancing=disable - [KNL,X86] Disable automatic NUMA balancing.
• intel_iommu=enable - [DMAR] Enable Intel IOMMU driver (DMAR) option.
• iommu=on, iommu=pt - [x86, IA-64] Disable IOMMU bypass, using IOMMU for PCI devices.
• nmi_watchdog=0 - [KNL,BUGS=X86] Debugging features for SMP kernels. Turn hardlockup detec-tor in nmi_watchdog off.
• nosoftlockup - [KNL] Disable the soft-lockup detector.
• tsc=reliable - Disable clocksource stability checks for TSC. [x86] reliable: mark tsc clocksource asreliable, this disables clocksource verification at runtime, as well as the stability checks done atbootup. Used to enable high-resolution timer mode on older hardware, and in virtualized environ-ment.
• hpet=disable - [X86-32,HPET] Disable HPET and use PIT instead.

Hugepages Configuration

Huge pages are namaged via sysctl configuration located in /etc/sysctl.d/90-csit.conf on each testbed.Default huge page size is 2M. The exact amount of huge pages depends on testbed. All the values aredefined in Ansible inventory - hosts files.

2.6.10 DUT Settings - VPP

VPP Version

VPP-19.08.2 release
VPP Compile Parameters

FD.io VPP compile job72
72 https://jenkins.fd.io/view/vpp/job/vpp-merge-1908_2-ubuntu1804/

2.6. Test Environment 159

https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/Documentation/cpu-freq/intel-pstate.txt
https://www.kernel.org/doc/Documentation/cpu-freq/intel-pstate.txt
https://www.kernel.org/doc/Documentation/timers/NO_HZ.txt
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://jenkins.fd.io/view/vpp/job/vpp-merge-1908_2-ubuntu1804/

CSIT REPORT, Release rls19082

VPP Install Parameters

$ dpkg -i --force-all *vpp*

VPP Startup Configuration

VPP startup configuration vary per test case, with different settings for $$CORELIST_WORKERS,
$$NUM_RX_QUEUES, $$UIO_DRIVER, $$NUM- MBUFS and $$NO_MULTI_SEG parameter. Default tem-plate is provided below:
ip
{

heap-size 4G
}
statseg
{

size 4G
}
unix
{

cli-listen /run/vpp/cli.sock
log /tmp/vpe.log
nodaemon

}
socksvr {

socket-name /run/vpp/api.sock
}
ip6
{

heap-size 4G
hash-buckets 2000000

}
heapsize 4G
plugins
{

plugin default
{

disable
}
plugin dpdk_plugin.so
{

enable
}

}
cpu
{

corelist-workers $$CORELIST_WORKERS
main-core 1

}
dpdk
{

num-mbufs $$NUM-MBUFS
uio-driver $$UIO_DRIVER
$$NO_MULTI_SEG
log-level debug
dev default
{

num-rx-queues $$NUM_RX_QUEUES
}
no-tx-checksum-offload

(continues on next page)

160 Chapter 2. VPP Performance

CSIT REPORT, Release rls19082

(continued from previous page)
dev $$DEV_1
dev $$DEV_2

}

Description of VPP startup settings used in CSIT is provided in Test Methodology (page 13).

2.6.11 TG Settings - TRex

TG Version

TRex v2.73
DPDK Version

DPDK v19.05
TG Build Script Used

TRex installation73

TG Startup Configuration

$ cat /etc/trex_cfg.yaml
- version : 2

interfaces : ["0000:0d:00.0","0000:0d:00.1"]
port_info :

- dest_mac : [0x3c,0xfd,0xfe,0x9c,0xee,0xf5]
src_mac : [0x3c,0xfd,0xfe,0x9c,0xee,0xf4]

- dest_mac : [0x3c,0xfd,0xfe,0x9c,0xee,0xf4]
src_mac : [0x3c,0xfd,0xfe,0x9c,0xee,0xf5]

TG Startup Command

$ sh -c 'cd <t-rex-install-dir>/scripts/ && sudo nohup ./t-rex-64 -i -c 7 --prefix $(hostname) --
→˓hdrh > /tmp/trex.log 2>&1 &'> /dev/null

TG API Driver

TRex driver74

73 https://git.fd.io/csit/tree/resources/tools/trex/trex_installer.sh?h=rls1908_274 https://git.fd.io/csit/tree/resources/tools/trex/trex_stateless_profile.py?h=rls1908_2

2.6. Test Environment 161

https://git.fd.io/csit/tree/resources/tools/trex/trex_installer.sh?h=rls1908_2
https://git.fd.io/csit/tree/resources/tools/trex/trex_stateless_profile.py?h=rls1908_2

CSIT REPORT, Release rls19082

2.7 Documentation

2.7.1 Container Orchestration in CSIT

Overview

Linux Containers

Linux Containers is an OS-level virtualization method for running multiple isolated Linux systems (con-tainers) on a compute host using a single Linux kernel. Containers rely on Linux kernel cgroups func-tionality for controlling usage of shared system resources (i.e. CPU, memory, block I/O, network) and fornamespace isolation. The latter enables complete isolation of applications’ view of operating environ-ment, including process trees, networking, user IDs and mounted file systems.
LXC (Linux Containers) combine kernel’s cgroups and support for isolated namespaces to provide anisolated environment for applications. Docker does use LXC as one of its execution drivers, enablingimage management and providing deployment services. More information in [lxc], [lxcnamespace] and[stgraber].
Linux containers can be of two kinds: privileged containers and unprivileged containers.
Unprivileged Containers

Running unprivileged containers is the safest way to run containers in a production environment. FromLXC 1.0 one can start a full system container entirely as a user, allowing to map a range of UIDs on thehost into a namespace inside of which a user with UID 0 can exist again. In other words an unprivilegedcontainer does mask the userid from the host, making it impossible to gain a root access on the host evenif a user gets root in a container. With unprivileged containers, non-root users can create containers andwill appear in the container as the root, but will appear as userid <non-zero> on the host. Unprivilegedcontainers are also better suited to supporting multi-tenancy operating environments. More informationin [lxcsecurity] and [stgraber].
Privileged Containers

Privileged containers do not mask UIDs, and container UID 0 is mapped to the host UID 0. Security andisolation is controlled by a good configuration of cgroup access, extensive AppArmor profile preventingthe known attacks as well as container capabilities and SELinux. Here a list of applicable security controlmechanisms:
• Capabilities - keep (whitelist) or drop (blacklist) Linux capabilities, [capabilities].
• Control groups - cgroups, resource bean counting, resource quotas, access restrictions, [cgroup1],[cgroup2].
• AppArmor - apparmor profiles aim to prevent any of the known ways of escaping a container orcause harm to the host, [apparmor].
• SELinux - Security Enhanced Linux is a Linux kernel security module that provides similar functionto AppArmor, supporting access control security policies including United States Department ofDefense-style mandatory access controls. Mandatory access controls allow an administrator of asystem to define how applications and users can access different resources such as files, devices,networks and inter- process communication, [selinux].
• Seccomp - secure computing mode, enables filtering of system calls, [seccomp].

More information in [lxcsecurity] and [lxcsecfeatures].
Linux Containers in CSIT

162 Chapter 2. VPP Performance

CSIT REPORT, Release rls19082

CSIT is using Privileged Containers as the sysfs is mounted with RW access. Sysfs is required to bemounted as RW due to VPP accessing /sys/bus/pci/drivers/uio_pci_generic/unbind. This is not thecase of unprivileged containers where sysfs is mounted as read-only.
Orchestrating Container Lifecycle Events

Following Linux container lifecycle events need to be addressed by an orchestration system:
1. Acquire - acquiring/downloading existing container images via docker pull or lxc-create -t

download.
2. Build - building a container image from scratch or another container image via docker build

<dockerfile/composefile> or customizing LXC templates in GitHub75.
3. (Re-)Create - creating a running instance of a container application from anew, or re-creating onethat failed. A.k.a. (re-)deploy via docker run or lxc-start
4. Execute - execute system operations within the container by attaching to running container. THisis done by lxc-attach or docker exec

5. Distribute - distributing pre-built container images to the compute nodes. Currently not imple-mented in CSIT.
Container Orchestration Systems Used in CSIT

Current CSIT testing framework integrates following Linux container orchestration mechanisms:
• LXC/Docker for complete VPP container lifecycle control.

LXC

LXC is the well-known and heavily tested low-level Linux container runtime [lxcsource], that providesa userspace interface for the Linux kernel containment features. With a powerful API and simple tools,LXC enables Linux users to easily create andmanage system or application containers. LXC uses followingkernel features to contain processes:
• Kernel namespaces: ipc, uts, mount, pid, network and user.
• AppArmor and SELinux security profiles.
• Seccomp policies.
• Chroot.
• Cgroups.

CSIT uses LXC runtime and LXC usertools to test VPP data plane performance in a range of virtual net-working topologies.
Known Issues

• Current CSIT restriction: only single instance of lxc runtime due to the cgroup policies used in CSIT.There is plan to add the capability into code to create cgroups per container instance to address thisissue. This sort of functionality is better supported in LXC 2.1 but can be done is current version aswell.
• CSIT code is currently using cgroup to control the range of CPU cores the LXC container runs on.VPP thread pinning is defined vpp startup.conf.

75 https://github.com/lxc/lxc/tree/master/templates

2.7. Documentation 163

https://github.com/lxc/lxc/tree/master/templates

CSIT REPORT, Release rls19082

Docker

Docker builds on top of Linux kernel containment features, and offers a high-level tool for wrapping theprocesses, maintaining and executing them in containers [docker]. Currently it using runc a CLI tool forspawning and running containers according to the OCI specification76
A Docker container image is a lightweight, stand-alone, executable package of a piece of software thatincludes everything needed to run it: code, runtime, system tools, system libraries, settings.
CSIT uses Docker to manage the maintenance and execution of containerized applications used in CSITperformance tests.

• Data plane thread pinning to CPU cores - Docker CLI and/or Docker configuration file controls therange of CPU cores the Docker image must run on. VPP thread pinning defined vpp startup.conf.
Implementation

CSIT container orchestration is implemented in CSIT Level-1 keyword Python libraries following theBuilder design pattern. Builder design pattern separates the construction of a complex object from its rep-resentation, so that the same construction process can create different representations e.g. LXC, Docker,other.
CSIT Robot Framework keywords are then responsible for higher level lifecycle control of of the namedcontainer groups. One can have multiple named groups, with 1..N containers in a group performing dif-ferent role/functionality e.g. NFs, Switch, Kafka bus, ETCD datastore, etc. ContainerManager class actsas a Director and uses ContainerEngine class that encapsulate container control.
Current CSIT implementation is illustrated using UML Class diagram:

1. Acquire
2. Build
3. (Re-)Create
4. Execute

+---+
| RF Keywords (high level lifecycle control) |
+---+
| Construct VNF containers on all DUTs |
| Acquire all '${group}' containers |
| Create all '${group}' containers |
| Install all '${group}' containers |
| Configure all '${group}' containers |
| Stop all '${group}' containers |
| Destroy all '${group}' containers |
+-----------------+---+

| 1
|
| 1..N

+-----------------v-----------------+ +--------------------------+
| ContainerManager | | ContainerEngine |
+-----------------------------------+ +--------------------------+
__init()__		__init(node)__
construct_container()		acquire(force)
construct_containers()		create()
acquire_all_containers()		stop()
create_all_containers()	1 1	destroy()
execute_on_container() <>-------	info()	
execute_on_all_containers()		execute(command)

(continues on next page)
76 https://www.opencontainers.org/

164 Chapter 2. VPP Performance

https://www.opencontainers.org/

CSIT REPORT, Release rls19082

(continued from previous page)
install_vpp_in_all_containers()		system_info()
configure_vpp_in_all_containers()		install_supervisor()
stop_all_containers()		install_vpp()
destroy_all_containers()		restart_vpp()
+-----------------------------------+ | create_vpp_exec_config() |

| create_vpp_startup_config|
| is_container_running() |
| is_container_present() |
| _configure_cgroup() |
+-------------^------------+

|
|
|

+----------+---------+
| |

+------+-------+ +------+-------+
| LXC | | Docker |
+--------------+ +--------------+
| (inherinted) | | (inherinted) |
+------+-------+ +------+-------+

| |
+---------+---------+

|
| constructs
|

+---------v---------+
| Container |
+-------------------+
| __getattr__(a) |
| __setattr__(a, v) |
+-------------------+

Sequentional diagram that illustrates the creation of a single container.
Legend:

e = engine [Docker|LXC]
.. = kwargs (variable number of keyword argument)

+-------+ +------------------+ +-----------------+
| RF KW | | ContainerManager | | ContainerEngine |
+---+---+ +--------+---------+ +--------+--------+

| | |
| 1: new ContainerManager(e) | |
+-+---------------------------->+-+ |
|-| |-| 2: new ContainerEngine |
|-| |-+----------------------->+-+
|-| |-| |-|
|-| +-+ +-+
|-| | |
|-| 3: construct_container(..) | |
|-+---------------------------->+-+ |
|-| |-| 4: init() |
|-| |-+----------------------->+-+
|-| |-| |-| 5: new +-------------+
|-| |-| |-+-------->| Container A |
|-| |-| |-| +-------------+
|-| |-|<-----------------------+-|
|-| +-+ +-+
|-| | |
|-| 6: acquire_all_containers() | |
|-+---------------------------->+-+ |

(continues on next page)

2.7. Documentation 165

CSIT REPORT, Release rls19082

(continued from previous page)
|-| |-| 7: acquire() |
|-| |-+----------------------->+-+
|-| |-| |-|
|-| |-| |-+--+
|-| |-| |-| | 8: is_container_present()
|-| |-| True/False |-|<-+
|-| |-| |-|
|-| |-| |-|

+---+
	-	ALT [isRunning & force]	-		-	--+	
	-		-		-		8a: destroy()
	-		-		-<--+		
+---+

|-| |-| |-|
|-| +-+ +-+
|-| | |
|-| 9: create_all_containers() | |
|-+---------------------------->+-+ |
|-| |-| 10: create() |
|-| |-+----------------------->+-+
|-| |-| |-+--+
|-| |-| |-| | 11: wait('RUNNING')
|-| |-| |-<--+
|-| +-+ +-+
|-| | |

+---+
	-	ALT		
	-	(install_vpp, configure_vpp)		
	-			
+---+

|-| | |
|-| 12: destroy_all_containers() | |
|-+---------------------------->+-+ |
|-| |-| 13: destroy() |
|-| |-+----------------------->+-+
|-| |-| |-|
|-| +-+ +-+
|-| | |
+++ | |
| | |
+ + +

Container Data Structure

Container is represented in Python L1 library as a separate Class with instance variables and no methodsexcept overriden __getattr__ and __setattr__. Instance variables are assigned to container dynamicallyduring the construct_container(**kwargs) call and are passed down from the RF keyword.
Usage example:
| Construct VNF containers on all DUTs
| | [Arguments] | ${technology} | ${image} | ${cpu_count}=${1} | ${count}=${1}
| | ...
| | ${group}= | Set Variable | VNF
| | ${skip_cpus}= | Evaluate | ${vpp_cpus}+${system_cpus}
| | Import Library | resources.libraries.python.ContainerUtils.ContainerManager
| | ... | engine=${container_engine} | WITH NAME | ${group}
| | ${duts}= | Get Matches | ${nodes} | DUT*
| | :FOR | ${dut} | IN | @{duts}

(continues on next page)

166 Chapter 2. VPP Performance

CSIT REPORT, Release rls19082

(continued from previous page)
| | | ${env}= | Create List | DEBIAN_FRONTEND=noninteractive
| | | ${mnt}= | Create List | /tmp:/mnt/host | /dev:/dev
| | | ${cpu_node}= | Get interfaces numa node | ${nodes['${dut}']}
| | | ... | ${dut1_if1} | ${dut1_if2}
| | | Run Keyword | ${group}.Construct containers
| | | ... | name=${dut}_${group} | node=${nodes['${dut}']} | mnt=${mnt}
| | | ... | image=${container_image} | cpu_count=${container_cpus}
| | | ... | cpu_skip=${skip_cpus} | cpuset_mems=${cpu_node}
| | | ... | cpu_shared=${False} | env=${env} | count=${container_count}
| | | ... | install_dkms=${container_install_dkms}
| | Append To List | ${container_groups} | ${group}

Mandatory parameters to create standalone container are: node, name, image [imagevar], cpu_count,
cpu_skip, cpuset_mems, cpu_shared.
There is no parameters check functionality. Passing required arguments is in coder responsibility. All theabove parameters are required to calculate the correct cpu placement. See documentation for the fullreference.
Kubernetes

For the future use, Kubernetes [k8sdoc] is implemented as separate library KubernetesUtils.py, with aclass with the same name. This utility provides an API for L2 Robot Keywords to control kubectl installedon each of DUTs. One time initialization script, resources/libraries/bash/k8s_setup.sh does reset/initkubectl, and initializes the csit namespace. CSIT namespace is required to not to interfere with existingsetups and it further simplifies apply/get/delete Pod/ConfigMap operations on SUTs.
Kubernetes utility is based on YAML templates to avoid crafting the huge YAML configuration files, whatwould lower the readability of code and requires complicated algorithms.
Two types of YAML templates are defined:

• Static - do not change between deployments, that is infrastructure containers like Kafka, Calico,ETCD.
• Dynamic - per test suite/case topology YAML files.

Making own python wrapper library of kubectl instead of using the official Python package allows tocontrol and deploy environment over the SSH library without the need of using isolated driver runningon each of DUTs.
Tested Topologies

Listed CSIT container networking test topologies are defined with DUT containerized VPP switch for-warding packets between NF containers. Each NF container runs their own instance of VPP in L2XCconfiguration.
Following container networking topologies are tested in CSIT-1908.2:

• LXC topologies:
– eth-l2xcbase-eth-2memif-1lxc.
– eth-l2bdbasemaclrn-eth-2memif-1lxc.

• Docker topologies:
– eth-l2xcbase-eth-2memif-1docker.
– eth-l2xcbase-eth-1memif-1docker

2.7. Documentation 167

CSIT REPORT, Release rls19082

References

2.7.2 Test Code Documentation

CSIT VPP Performance Tests Documentation91 contains detailed functional description and input param-eters for each test case.

91 https://docs.fd.io/csit/rls1908_2/doc/tests.vpp.perf.html

168 Chapter 2. VPP Performance

https://docs.fd.io/csit/rls1908_2/doc/tests.vpp.perf.html

CHAPTER

THREE

VPP DEVICE

3.1 Overview

3.1.1 Virtual Topologies

CSIT VPP Device tests are executed in Physical containerized topologies created on demand using set ofscripts hosted and developed under CSIT repository. It runs on physical baremetal servers hosted by LFFD.io project. Based on the packet path thru SUT Containers, three distinct logical topology types areused for VPP DUT data plane testing:
1. vfNIC-to-vfNIC switching topologies.
2. vfNIC-to-vhost-user switching topologies.
3. vfNIC-to-memif switching topologies.

vfNIC-to-vfNIC Switching

The simplest physical topology for software data plane application like VPP is vfNIC-to-vfNIC switching.Tested virtual topologies for 2-Node testbeds are shown in figures below.

169

CSIT REPORT, Release rls19082

Ethernet Wire Encapsulation: dot1q

2-Node Containerized Topologies

Host Server

cSUT[1.1]

cTG[1.2]
Linux

Kernel

Linux-Host

User-Space

DUT

…

TG

NIC x710

cSUT[n.1]

cTG[n.2]

DUT

TG

External
cable

VF[2] VF[2n]

VFs mapped to VLAN IDs

VF[1] VF[2n-1]

1

2

2n

2n-1

VF[2] VF[2n]

VF[1] VF[2n-1]

1

2

2n

2n-1

TenGigEth-0 TenGigEth-1

External
cable

TenGigEth-2 TenGigEth-3

…

SUT1 isDocker Container (runningUbuntu, depending on the test suite), TG is a TrafficGenerator (runningUbuntu Container). SUTs run VPP SWapplication in Linux user-mode as aDevice Under Test (DUT) withinthe container. TG runs Scapy SWapplication as a packet TrafficGenerator. Network connectivity betweenSUTs and to TG is provided using virtual function of physical NICs.
Virtual topologies are created on-demand whenever a verification job is started (e.g. triggered by thegerrit patch submission) and destroyed upon completion of all functional tests. Each node is a containerrunning on physical server. During the test execution, all nodes are reachable thru the Management (notshown above for clarity).
vfNIC-to-vhost-user Switching

vfNIC-to-vhost-user switching topology test cases require VPP DUT to communicate with Virtual Ma-chine (VM) over Vhost-user virtual interfaces. VM is created on SUT1 for the duration of these particulartest cases only. Virtual test topology with VM is shown in the figure below.

170 Chapter 3. VPP Device

CSIT REPORT, Release rls19082

Ethernet Wire Encapsulation: dot1q

2-Node Containerized Topologies: vfNIC-to-vhost-user switching

Host Server

cSUT[1.1]

cTG[1.2]
Linux

Kernel

Linux-Host

User-Space

DUT

TG

NIC x710

External
cable

VF[2]

VFs mapped to VLAN IDs

VF[1]

1

2

2n

2n-1

VF[2]

VF[1]

1

2

2n

2n-1

TenGigEth-0 TenGigEth-1

External
cable

TenGigEth-2 TenGigEth-3

Nested/VM[1]

Fwd
Cxt[0]

Fwd
Cxt[1]

VNF[1]

vfNIC-to-memif Switching

vfNIC-to-memif switching topology test cases require VPP DUT to communicate with another DockerContainer over memif interfaces. Container is created for the duration of these particular test cases onlyand it is running the same VPP version as running on DUT. Virtual test topology with Memif is shown inthe figure below.

3.1. Overview 171

CSIT REPORT, Release rls19082

Ethernet Wire Encapsulation: dot1q

2-Node Containerized Topologies: vfNIC-to-memif switching

Host Server

cSUT[1.1]

cTG[1.2]
Linux

Kernel

Linux-Host

User-Space

DUT

TG

NIC x710

DUT1_CNF1[1]

DUT1_CNF1

External
cable

VF[2]

VFs mapped to VLAN IDs

VF[1]

1

2

2n

2n-1

VF[2]

VF[1]

1

2

2n

2n-1

TenGigEth-0 TenGigEth-1

External
cable

TenGigEth-2 TenGigEth-3

3.1.2 Functional Tests Coverage

CSIT-1908.2 includes following VPP functionality tested in VPP Device environment:
Functionality DescriptionACL Ingress Access Control List security for L2 Bridge-Domain MAC switching, IPv4routing, IPv6 routing.COP COP address white-list and black-list filtering for IPv4 and IPv6 routing.IPSec IPSec tunnel and transport modes.IPv4 IPv4 routing, ICMPv4.IPv6 IPv4 routing, ICMPv6.L2BD L2 Bridge-Domain switching for untagged Ethernet.L2XC L2 Cross-Connect switching for untagged Ethernet.Memif Interface Baseline VPP memif interface tests.QoS Policer Me-tering Ingress packet rate metering and marking for IPv4, IPv6.
Tap Interface Baseline Linux tap interface tests.VLAN Tag L2 VLAN subinterfaces.Vhost-user Inter-face Baseline VPP vhost-user interface tests.
VXLAN VXLAN overlay tunneling for L2-over-IPv4 and -over-IPv6.

3.1.3 Tests Naming

CSIT-1908.2 follows a common structured naming convention for all performance and system functionaltests, introduced in CSIT-17.01.

172 Chapter 3. VPP Device

CSIT REPORT, Release rls19082

The naming should be intuitive for majority of the tests. Complete description of CSIT test naming con-vention is provided on Test Naming (page 185).

3.2 Release Notes

3.2.1 Changes in CSIT-1908.2

1. TEST FRAMEWORK
• Bug fixes.
• ARM platform compatibility.

2. TEST COVERAGE
• Increased test coverage: Dot1q, IPsec, 802.1ad VXLAN, COP whitelist, COP blacklist, QoS
Policer Metering, iACL whitelist, AVF driver, TAP Interface.

• Align vpp_device L2 Robot Keywords with performance L2 Robot Keywords.

3.2.2 Known Issues

List of known issues in CSIT-1908.2 for VPP functional tests in VPP Device:
JiraID Issue Description1

3.3 Integration Tests

3.3.1 Abstract

FD.io VPP software data plane technology has become very popular across a wide range of VPP eco-system use cases, putting higher pressure on continuous verification of VPP software quality.
This document describes a proposal for design and implementation of extended continuous VPP test-ing by extending existing test environments. Furthermore it describes and summarizes implementationdetails of Integration and System tests platform 1-Node VPP_Device. It aims to provide a complete end-to-end view of 1-Node VPP_Device environment in order to improve extendability and maintenance, underthe guideline of VPP core team.
The keywords “MUST”, “MUSTNOT”, “REQUIRED”, “SHALL”, “SHALLNOT”, “SHOULD”, “SHOULDNOT”,“RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in RFC
817492.

92 https://tools.ietf.org/html/rfc8174.html

3.2. Release Notes 173

https://tools.ietf.org/html/rfc8174.html
https://tools.ietf.org/html/rfc8174.html

CSIT REPORT, Release rls19082

3.3.2 Overview

Jenkins

Jenkins
slave

TG

SUT

CSIT
shim

on
every
host

Nomad1

SSH to known port

SSH or
docker
exec

Unique
network

Nomad1
bridge

3.3.3 Physical Testbeds

All FD.io CSIT vpp-device tests are executed on physical testbeds built with bare-metal servers hostedby LF FD.io project. Two 1-node testbed topologies are used:
• 2-Container Topology: Consisting of one Docker container acting as SUT (System Under Test) andone Docker container as TG (Traffic Generator), both connected in ring topology via physical NICcross-connecting.

Current FD.io production testbeds are built with servers based on one processor generation of IntelXeons: Skylake (Platinum 8180). Testbeds built with servers based on Arm processors are in the pro-cess of being added to FD.io production.
Following section describe existing production 1n-skx testbed.
1-Node Xeon Skylake (1n-skx)

1n-skx testbed is based on single SuperMicro SYS-7049GP-TRT server equipped with two Intel XeonSkylake Platinum 8180 2.5 GHz 28 core processors. Physical testbed topology is depicted in a figurebelow.

174 Chapter 3. VPP Device

CSIT REPORT, Release rls19082

Ethernet Wire Encapsulation: dot1q

2-Node Containerized Topologies

Host Server

cSUT[1.1]

cTG[1.2]
Linux

Kernel

Linux-Host

User-Space

DUT

…

TG

NIC x710

cSUT[n.1]

cTG[n.2]

DUT

TG

External
cable

VF[2] VF[2n]

VFs mapped to VLAN IDs

VF[1] VF[2n-1]

1

2

2n

2n-1

VF[2] VF[2n]

VF[1] VF[2n-1]

1

2

2n

2n-1

TenGigEth-0 TenGigEth-1

External
cable

TenGigEth-2 TenGigEth-3

…

Server is populated with the following NIC models:
1. NIC-1: x710-da4 4p10GE Intel.
2. NIC-2: x710-da4 4p10GE Intel.

All Intel Xeon Skylake servers run with Intel Hyper-Threading enabled, doubling the number of logicalcores exposed to Linux, with 56 logical cores and 28 physical cores per processor socket.
NIC interfaces are shared using Linux vfio_pci and VPP VF drivers:

• DPDK VF driver,
• Fortville AVF driver.

Provided Intel x710-da4 4p10GE NICs support 32 VFs per interface, 128 per NIC.
Complete 1n-skx testbeds specification is available on CSIT LF Testbeds93 wiki page.
Total of two 1n-skx testbeds are in operation in FD.io labs.
1-Node Virtualbox (1n-vbox)

1n-skx testbed can run in single VirtualBox VM machine. This solution replaces the previously usedVagrant environment based on 3 VMs.
VirtualBox VMMAY be created by Vagrant and MUST have additional 4 virtio NICs each pair attached toseparate private networks to simulate back-to-back connections. It SHOULD be 82545EM device model(otherwise can be changed in boostrap scripts). Example of Vagrant configuration:
Vagrant.configure(2) do |c|

c.vm.network "private_network", type: "dhcp", auto_config: false,

(continues on next page)
93 https://wiki.fd.io/view/CSIT/Testbeds:_Xeon_Skx,_Arm,_Atom.

3.3. Integration Tests 175

https://wiki.fd.io/view/CSIT/Testbeds:_Xeon_Skx,_Arm,_Atom.

CSIT REPORT, Release rls19082

(continued from previous page)
virtualbox__intnet: "port1", nic_type: "82545EM"

c.vm.network "private_network", type: "dhcp", auto_config: false,
virtualbox__intnet: "port2", nic_type: "82545EM"

c.vm.provider :virtualbox do |v|
v.customize ["modifyvm", :id, "--nicpromisc2", "allow-all"]
v.customize ["modifyvm", :id, "--nicpromisc3", "allow-all"]
v.customize ["modifyvm", :id, "--nicpromisc4", "allow-all"]
v.customize ["modifyvm", :id, "--nicpromisc5", "allow-all"]

Vagrant VM is populated with the following NIC models:
1. NIC-1: 82545EM Intel.
2. NIC-2: 82545EM Intel.
3. NIC-3: 82545EM Intel.
4. NIC-4: 82545EM Intel.

3.3.4 Containers

It was agreed on TWS (Technical Work Stream) call to continue with Ubuntu 18.04 LTS as a baselinesystem with OPTIONAL extend to Centos 7 and SuSE per demand [TWSLink].
All DCR (Docker container) images are REQUIRED to be hosted on Docker registry available from LFnetwork, publicly available and trackable. For backup, tracking and contributing purposes all Dockerfiles(including files needed for building container) MUST be available and stored in [fdiocsitgerrit] repositoryunder appropriate folders. This allows the peer review process to be done for every change of infrastruc-ture related to scope of this document. Currently only csit-shim-dcr and csit-sut-dcr containers will bestored and maintained under CSIT repository by CSIT contributors.
At the time of designing solution described in this document the interconnection between [dockerhub]and [fdiocsitgerrit] for automated build purposes and image hosting cannot be established with the trustand respectful to security of FD.io project. Unless adressed, DCR images will be placed in custom registryservice [fdioregistry]. Automated Jenkins jobs will be created in align of long term solution for containerlifecycle and ability to build new version of docker images.
In parallel, the effort is started to find the outsourced Docker registry service.
Versioning

As of initial version of vpp-device, we do have only single latest version of Docker image hosted on[dockerhub]. This will be addressed as further improvement with proper semantic versioning.
jenkins-slave-dcr

This DCR acts as the Jenkins slave (known also as jenkins minion). It can connect over SSH protocolto TCP port 6022 of csit-shim-dcr and executes non-interactive reservation script. Nomad is responsi-ble for scheduling this container execution onto specific 1-Node VPP_Device testbed. It executes CSITenvironment including CSIT framework.
All software dependencies including VPP/DPDK that are not present in csit-sut-dcr container imageand/or needs to be compiled prior running on csit-sut-dcr SHOULD be compiled in this container.

• Container Image Location: Docker image at snergster/vpp-ubuntu18.
• Container Definition: Docker file specified at [JenkinsSlaveDcrFile].
• Initializing: Container is initialized from within Consul by HashiCorp and Nomad by HashiCorp.

176 Chapter 3. VPP Device

CSIT REPORT, Release rls19082

csit-shim-dcr

This DCR acts as an intermediate layer running script responsible for orchestrating topologies under testand reservation. Responsible for managing VF resources and allocation to DUT (Device Under Test), TG(Traffic Generator) containers. ThisMUST to be done on csit-shim-dcr. This image also acts as the genericreservation mechanics arbiter to make sure that only Y number of simulations are spawned on any givenHW node.
• Container Image Location: Docker image at snergster/csit-shim.
• Container Definition: Docker file specified at [CsitShimDcrFile].
• Initializing: Container is initialized from within Consul by HashiCorp and Nomad by HashiCorp. Re-quired docker parameters, to be able to run nested containers with VF reservation system are:privileged, net=host, pid=host.
• Connectivity: Over SSH only, using <host>:6022 format. Currently using root user account as pri-mary. From the jenkins slave it will be able to connect via env variable, since the jenkins slave doesn’tactually know what host its running on.

ssh -p 6022 root@10.30.51.node

csit-sut-dcr

This DCR acts as an SUT (System Under Test). Any DUT or TG application is installed there. It is REC-OMMENDED to install DUT and all DUT dependencies via commands rpm -ihv on RedHat based OS or
dpkg -i on Debian based OS.
Container is designed to be a very lightweight Docker image that only installs packages and executebinaries (previously built or downloaded on jenkins-slave-dcr) and contains libraries necessary to runCSIT framework including those required by DUT/TG.

• Container Image Location: Docker image at snergster/csit-sut.
• Container Definition: Docker file specified at [CsitSutDcrFile].
• Initializing:

docker run
Run the container in the background and print the new container ID.
--detach=true
Give extended privileges to this container. A "privileged" container is
given access to all devices and able to run nested containers.
--privileged
Publish all exposed ports to random ports on the host interfaces.
--publish-all
Automatically remove the container when it exits.
--rm
Size of /dev/shm.
dcr_stc_params+="--shm-size 512M "
Override access to PCI bus by attaching a filesystem mount to the
container.
dcr_stc_params+="--mount type=tmpfs,destination=/sys/bus/pci/devices "
Mount vfio to be able to bind to see bound interfaces. We cannot use
--device=/dev/vfio as this does not see newly bound interfaces.
dcr_stc_params+="--volume /dev/vfio:/dev/vfio "
Mount docker.sock to be able to use docker deamon of the host.
dcr_stc_params+="--volume /var/run/docker.sock:/var/run/docker.sock "
Mount /opt/boot/ where VM kernel and initrd are located.
dcr_stc_params+="--volume /opt/boot/:/opt/boot/ "
Mount host hugepages for VMs.
dcr_stc_params+="--volume /dev/hugepages/:/dev/hugepages/ "

3.3. Integration Tests 177

CSIT REPORT, Release rls19082

Container name is catenated from csit- prefix and uuid generated uniquely for each container in-stance.
• Connectivity: Over SSH only, using <host>[:<port>] format. Currently using root user account asprimary.

ssh -p <port> root@10.30.51.<node>

Container required to run as --privileged due to ability to create nested containers and have fullread/write access to sysfs (for bind/unbind). Docker automatically pick free network port (--publish-all)for ability to connect over ssh. To be able to limit access to PCI bus, container is creating tmpfs mounttype in PCI bus tree. CSIT reservation script is dynamically linking only PCI devices (NIC cards) that arereserved for particular container. This way it is not colliding with other containers. To make vfio work,access to /dev/vfio must be granted.

3.3.5 Environment initialization

All 1-node servers are to be managed and provisioned via the [ansiblelink] set of playbooks with vpp-
device role. Full playbooks can be found under [fdiocsitansible] directory. This way we are able to trackall configuration changes of physical servers in gerrit (in structured yaml format) as well as we are able toextend vpp-device to additional servers with less effort or re-stage servers in case of failure.
SR-IOV VF initialization is done via systemd service during host system boot up. Service with name csit-
initialize-vfs.service is created under systemd system context (/etc/systemd/system/). By default serviceis calling /usr/local/bin/csit-initialize-vfs.sh with single parameter:

• start: Creates maximum number of virtual functions (VFs) (detected from sriov_totalvfs) for eachwhitelisted PCI device.
• stop: Removes all VFs (VFs) for all whitelisted PCI device.

Service is considered active even when all of its processes exited successfully. Stopping service will au-tomatically remove VFs.
[Unit]
Description=CSIT Initialize SR-IOV VFs
After=network.target

[Service]
Type=one-shot
RemainAfterExit=True
ExecStart=/usr/local/bin/csit-initialize-vfs.sh start
ExecStop=/usr/local/bin/csit-initialize-vfs.sh stop

[Install]
WantedBy=default.target

Script is driven by two array variables pci_blacklist/pci_whitelist. TheyMUST store all PCI addressesin <domain>:<bus>:<device>.<func> format, where:
• pci_blacklist: PCI addresses to be skipped from VFs initialization (usefull for e.g. excluding manage-ment network interfaces).
• pci_whitelist: PCI addresses to be included for VFs initialization.

3.3.6 VF reservation

During topology initialization phase of script, mutex is used to avoidmultiple instances of script to interactwith each other during resources allocation. Mutal exclusion ensure that no two distinct instances ofscript will get same resource list.
Reservation function reads the list of all available virtual function network devices in system:
178 Chapter 3. VPP Device

CSIT REPORT, Release rls19082

Find the first ${device_count} number of available TG Linux network
VF device names. Only allowed VF PCI IDs are filtered.
for netdev in ${tg_netdev[@]}
do

for netdev_path in $(grep -l "${pci_id}" \
/sys/class/net/${netdev}*/device/device \
2> /dev/null)

do
if [[${#TG_NETDEVS[@]} -lt ${device_count}]]; then

tg_netdev_name=$(dirname ${netdev_path})
tg_netdev_name=$(dirname ${tg_netdev_name})
TG_NETDEVS+=($(basename ${tg_netdev_name}))

else
break

fi
done
if [[${#TG_NETDEVS[@]} -eq ${device_count}]]; then

break
fi

done

Where ${pci_id} is ID of white-listed VF PCI ID. For more information please see [pciids]. This act assecurity constraint to prevent taking other unwanted interfaces. The output list of all VF network devicesis split into two lists for TG and SUT side of connection. First two items from each TG or SUT networkdevices list are taken to expose directly to namespace of container. This can be done via commands:
$ ip link set ${netdev} netns ${DCR_CPIDS[tg]}
$ ip link set ${netdev} netns ${DCR_CPIDS[dut1]}

In this stage also symbolic links to PCI devices under sysfs bus directory tree are created in running con-tainers. Once VF devices are assigned to container namespace and PCI deivces are linked to runningcontainers and mutex is exited. Selected VF network device automatically dissapear from parent con-tainer namespace, so another instance of script will not find device under that namespace.
Once Docker container exits, network device is returned back into parent namespace and can be reused.

3.3.7 Network traffic isolation - Intel i40evf

In a virtualized environment, on Intel(R) Server Adapters that support SR-IOV, the virtual function (VF)may be subject to malicious behavior. Software- generated layer two frames, like IEEE 802.3x (link flowcontrol), IEEE 802.1Qbb (priority based flow-control), and others of this type, are not expected and canthrottle traffic between the host and the virtual switch, reducing performance. To resolve this issue, con-figure all SR-IOV enabled ports for VLAN tagging. This configuration allows unexpected, and potentiallymalicious, frames to be dropped. [inteli40e]
To configure VLAN tagging for the ports on an SR-IOV enabled adapter, use the following command. TheVLAN configuration SHOULD be done before the VF driver is loaded or the VM is booted. [inteli40e]
$ ip link set dev <PF netdev id> vf <id> vlan <vlan id>

For example, the following instructions will configure PF eth0 and the first VF on VLAN 10.
$ ip link set dev eth0 vf 0 vlan 10

VLAN Tag Packet Steering allows to send all packets with a specific VLAN tag to a particular SR-IOVvirtual function (VF). Further, this feature allows to designate a particular VF as trusted, and allows thattrusted VF to request selective promiscuous mode on the Physical Function (PF). [inteli40e]
To set a VF as trusted or untrusted, enter the following command in the Hypervisor:

3.3. Integration Tests 179

CSIT REPORT, Release rls19082

$ ip link set dev eth0 vf 1 trust [on|off]

Once the VF is designated as trusted, use the following commands in the VM to set the VF to promiscuousmode. [inteli40e]
• For promiscuous all:

$ ip link set eth2 promisc on

• For promiscuous Multicast:
$ ip link set eth2 allmulti on

Note: By default, the ethtool priv-flag vf-true-promisc-support is set to off, meaning that promiscuousmode for the VF will be limited. To set the promiscuous mode for the VF to true promiscuous and allowthe VF to see all ingress traffic, use the following command. $ ethtool set-priv-flags p261p1 vf-true-promisc-support on The vf-true-promisc-support priv-flag does not enable promiscuous mode; rather, itdesignates which type of promiscuous mode (limited or true) you will get when you enable promiscuousmode using the ip link commands above. Note that this is a global setting that affects the entire device.However,the vf-true-promisc-support priv-flag is only exposed to the first PF of the device. The PFremains in limited promiscuous mode (unless it is inMFPmode) regardless of the vf-true-promisc-supportsetting. [inteli40e]
Service described earlier csit-initialize-vfs.service is responsible for assigning 802.1Q vlan tagging to eachvitual function via physical function from list of white-listed PCI addresses by following (simplified) code.
SCRIPT_DIR="$(dirname $(readlink -e "${BASH_SOURCE[0]}"))"
source "${SCRIPT_DIR}/csit-initialize-vfs-data.sh"

Initilize whitelisted NICs with maximum number of VFs.
pci_idx=0
for pci_addr in ${PCI_WHITELIST[@]}; do

if ! [[${PCI_BLACKLIST[*]} =~ "${pci_addr}"]]; then
pci_path="/sys/bus/pci/devices/${pci_addr}"
SR-IOV initialization
case "${1:-start}" in

"start")
sriov_totalvfs=$(< "${pci_path}"/sriov_totalvfs)
;;

"stop")
sriov_totalvfs=0
;;

esac
echo ${sriov_totalvfs} > "${pci_path}"/sriov_numvfs
SR-IOV 802.1Q isolation
case "${1:-start}" in

"start")
pf=$(basename "${pci_path}"/net/*)
for vf in $(seq "${sriov_totalvfs}"); do

PCI address index in array (pairing siblings).
if [[-n ${PF_INDICES[@]}]]
then

vlan_pf_idx=${PF_INDICES[$pci_addr]}
else

vlan_pf_idx=$((pci_idx % (${#PCI_WHITELIST[@]}/2)))
fi
802.1Q base offset.
vlan_bs_off=1100
802.1Q PF PCI address offset.

(continues on next page)

180 Chapter 3. VPP Device

CSIT REPORT, Release rls19082

(continued from previous page)
vlan_pf_off=$((vlan_pf_idx * 100 + vlan_bs_off))
802.1Q VF PCI address offset.
vlan_vf_off=$((vlan_pf_off + vf - 1))
VLAN string.
vlan_str="vlan ${vlan_vf_off}"
MAC string.
mac5="$(printf '%x' ${pci_idx})"
mac6="$(printf '%x' $((vf - 1)))"
mac_str="mac ba:dc:0f:fe:${mac5}:${mac6}"
Set 802.1Q VLAN id and MAC address
ip link set ${pf} vf $((vf - 1)) ${mac_str} ${vlan_str}
ip link set ${pf} vf $((vf - 1)) trust on
ip link set ${pf} vf $((vf - 1)) spoof off

done
pci_idx=$((pci_idx + 1))
;;

esac
rmmod i40evf
modprobe i40evf

fi
done

Assignment starts at VLAN 1100 and incrementing by 1 for each VF and by 100 for each white-listed PCIaddress up to the middle of the PCI list. Second half of the lists is assumed to be directly (cable) pairedsiblings and assigned with same 802.1Q VLANs as its siblings.

3.3.8 Open tasks

Security

Note: Switch to non-privileged containers: As of now all three container flavors are using privilegedcontainers to make it working. Explore options to switch containers to non-privileged with explicit ratherimplicit privileges.

Note: Switch to testuser account intead of root.

Maintainability

Note: Docker image distribution: Create jenkins jobs with full pipiline of CI/CD for CSIT Docker images.

Stability

Note: Implement queueing mechanism: Currently there is no mechanics that would place starving jobsin queue in case of no resources available.

Note: Replace reservation script with Docker network plugin written in GOLANG/SH/Python - platformindependent.

3.3. Integration Tests 181

CSIT REPORT, Release rls19082

3.3.9 Links

3.4 Documentation

CSIT VPP Device Tests Documentation104 contains detailed functional description and input parametersfor each test case.

104 https://docs.fd.io/csit/rls1908_2/doc/tests.vpp.device.html

182 Chapter 3. VPP Device

https://docs.fd.io/csit/rls1908_2/doc/tests.vpp.device.html

CHAPTER

FOUR

CSIT FRAMEWORK

4.1 Design

FD.io CSIT system design needs to meet continuously expanding requirements of FD.io projects includingVPP, related sub-systems (e.g. plugin applications, DPDK drivers) and FD.io applications (e.g. DPDK appli-cations), as well as growing number of compute platforms running those applications. With CSIT projectscope and charter including both FD.io continuous testing AND performance trending/comparisons,those evolving requirements further amplify the need for CSIT framework modularity, flexibility and us-ability.

4.1.1 Design Hierarchy

CSIT follows a hierarchical system design with SUTs and DUTs at the bottom level of the hierarchy, pre-sentation level at the top level and a number of functional layers in-between. The current CSIT systemdesign including CSIT framework is depicted in the figure below.

10/24/17 <number>

Tools
(doc-gen,

report-

gen,

test_env-

builders)

CSIT System Design Hierarchy

Python Library

Performance Traffic

Generator Drivers

(TRex)

Func�onal

Traffic

Generator

Scripts

(Scapy)

Level-2 Robot Keyword Inventory

Tests (vpp-verify, csit-verify, …)

Traffic Profiles

Presenta�on & Analy�cs

FD.io CSIT Release ReportsDocsTrending

Test

data

(Python)

Python Calls

Python
Calls

Python Calls

Python
Calls

Shell
scripts

Robot Calls

Python
Calls

Python
Calls

Shell scripts
Robot Calls

VPP: VAT Cals

CI/CD Jenkins Jobs

 Users

Performance Functionality Programing

 CSIT Tests

 CSIT Framework

Topology

files

(yaml)

 CSIT Tests

 SUT DUT SUT DUT SUT TG SUT DUT SUT DUT SUT TG SUT DUT SUT TG

Physical topologies Virtualied topologies i.e. VIRL

Python
Calls

A brief bottom-up description is provided here:

183

CSIT REPORT, Release rls19082

1. SUTs, DUTs, TGs
• SUTs - Systems Under Test;
• DUTs - Devices Under Test;
• TGs - Traffic Generators;

2. Level-1 libraries - Robot and Python
• Lowest level CSIT libraries abstracting underlying test environment, SUT, DUT and TGspecifics;
• Used commonly across multiple L2 KWs;
• Performance and functional tests:

– L1 KWs (KeyWords) are implemented as RF libraries and Python libraries;
• Performance TG L1 KWs:

– All L1 KWs are implemented as Python libraries:
* Support for TRex only today;
* CSIT IXIA drivers in progress;

• Performance data plane traffic profiles:
– TG-specific stream profiles provide full control of:

* Packet definition - layers, MACs, IPs, ports, combinations thereof e.g. IPs and UDPports;
* Stream definitions - different streams can run together, delayed, one after each other;
* Streamprofiles are independent of CSIT framework and can be used in any T-rex setup,can be sent anywhere to repeat tests with exactly the same setup;
* Easily extensible - one can create a new stream profile that meets tests requirements;
* Same stream profile can be used for different tests with the same traffic needs;

• Functional data plane traffic scripts:
– Scapy specific traffic scripts;

3. Level-2 libraries - Robot resource files:
• Higher level CSIT libraries abstracting required functions for executing tests;
• L2 KWs are classified into the following functional categories:

– Configuration, test, verification, state report;
– Suite setup, suite teardown;
– Test setup, test teardown;

4. Tests - Robot:
• Test suites with test cases;
• Performance tests using physical testbed environment:

– VPP;
– DPDK-Testpmd;
– DPDK-L3Fwd;

• Tools:
– Documentation generator;
– Report generator;

184 Chapter 4. CSIT Framework

CSIT REPORT, Release rls19082

– Testbed environment setup ansible playbooks;
– Operational debugging scripts;

4.1.2 Test Lifecycle Abstraction

A well coded test must follow a disciplined abstraction of the test lifecycles that includes setup, con-figuration, test and verification. In addition to improve test execution efficiency, the commmon aspectsof test setup and configuration shared across multiple test cases should be done only once. Translatingthese high-level guidelines into the Robot Framework one arrives to definition of a well coded RF testsfor FD.io CSIT. Anatomy of Good Tests for CSIT:
1. Suite Setup - Suite startup Configuration common to all Test Cases in suite: uses ConfigurationKWs, Verification KWs, StateReport KWs;
2. Test Setup - Test startup Configuration common to multiple Test Cases: uses Configuration KWs,StateReport KWs;
3. Test Case - uses L2 KWs with RF Gherkin style:

• prefixed with {Given} - Verification of Test setup, reading state: uses Configuration KWs, Veri-fication KWs, StateReport KWs;
• prefixed with {When} - Test execution: Configuration KWs, Test KWs;
• prefixed with {Then} - Verification of Test execution, reading state: uses Verification KWs,StateReport KWs;

4. Test Teardown - post Test teardown with Configuration cleanup and Verification common to multi-ple Test Cases - uses: Configuration KWs, Verification KWs, StateReport KWs;
5. Suite Teardown - Suite post-test Configuration cleanup: uses Configuration KWs, Verification KWs,StateReport KWs;

4.1.3 RF Keywords Functional Classification

CSIT RF KWs are classified into the functional categories matching the test lifecycle events describedearlier. All CSIT RF L2 and L1 KWs have been grouped into the following functional categories:
1. Configuration;
2. Test;
3. Verification;
4. StateReport;
5. SuiteSetup;
6. TestSetup;
7. SuiteTeardown;
8. TestTeardown;

4.1.4 RF Keywords Naming Guidelines

Readability counts: “..code is read much more often than it is written.” Hence following a good and con-sistent grammar practice is important when writing RF KeyWords and Tests. All CSIT test cases are codedusing Gherkin style and include only L2 KWs references. L2 KWs are coded using simple style and in-clude L2 KWs, L1 KWs, and L1 python references. To improve readability, the proposal is to use the samegrammar for both RF KW styles, and to formalize the grammar of English sentences used for naming theRF KWs. RF KWs names are short sentences expressing functional description of the command. Theymust follow English sentence grammar in one of the following forms:

4.1. Design 185

CSIT REPORT, Release rls19082

1. Imperative - verb-object(s): “Do something”, verb in base form.
2. Declarative - subject-verb-object(s): “Subject does something”, verb in a third-person singular presenttense form.
3. Affirmative - modal_verb-verb-object(s): “Subject should be something”, “Object should exist”, verb inbase form.
4. Negative - modal_verb-Not-verb-object(s): “Subject should not be something”, “Object should not ex-

ist”, verb in base form.
Passive form MUST NOT be used. However a usage of past participle as an adjective is okay. See usageexamples provided in the Coding guidelines section below. Following sections list applicability of theabove grammar forms to different RF KW categories. Usage examples are provided, both good and bad.

4.1.5 Coding Guidelines

Coding guidelines can be found on Design optimizations wiki page105.

4.2 Test Naming

4.2.1 Background

CSIT-1908.2 follows a common structured naming convention for all performance and system functionaltests, introduced in CSIT-1701.
The naming should be intuitive for majority of the tests. Complete description of CSIT test naming con-vention is provided on CSIT test naming wiki page106. Below few illustrative examples of the namingusage for test suites across CSIT performance, functional and Honeycomb management test areas.

4.2.2 Naming Convention

The CSIT approach is to use tree naming convention and to encode following testing information intotest suite and test case names:
1. packet network port configuration

• port type, physical or virtual;
• number of ports;
• NIC model, if applicable;
• port-NIC locality, if applicable;

2. packet encapsulations;
3. VPP packet processing

• packet forwarding mode;
• packet processing function(s);

4. packet forwarding path
• if present, network functions (processes, containers, VMs) and their topology within the com-puter;

5. main measured variable, type of test.
105 https://wiki.fd.io/view/CSIT/Design_Optimizations106 https://wiki.fd.io/view/CSIT/csit-test-naming

186 Chapter 4. CSIT Framework

https://wiki.fd.io/view/CSIT/Design_Optimizations
https://wiki.fd.io/view/CSIT/csit-test-naming

CSIT REPORT, Release rls19082

Proposed convention is to encode ports and NICs on the left (underlay), followed by outer-most frameheader, then other stacked headers up to the header processed by vSwitch-VPP, then VPP forwardingfunction, then encap on vhost interface, number of vhost interfaces, number of VMs. If chained VMspresent, they get added on the right. Test topology is expected to be symmetric, in other words packetsenter and leave SUT through ports specified on the left of the test name. Here some examples to illustratethe convention followed by the complete legend, and tables mapping the new test filenames to old ones.

4.2.3 Naming Examples

CSIT test suite naming examples (filename.robot) for common tested VPP topologies:
1. Physical port to physical port - a.k.a. NIC-to-NIC, Phy-to-Phy, P2P

• PortNICConfig-WireEncapsulation-PacketForwardingFunction- PacketProcessingFunction1-. . . -
PacketProcessingFunctionN-TestType

• 10ge2p1x520-dot1q-l2bdbasemaclrn-ndrdisc.robot => 2 ports of 10GE on Intel x520 NIC,dot1q tagged Ethernet, L2 bridge-domain baseline switching with MAC learning, NDRthroughput discovery.
• 10ge2p1x520-ethip4vxlan-l2bdbasemaclrn-ndrchk.robot => 2 ports of 10GE on Intel x520 NIC,IPv4 VXLAN Ethernet, L2 bridge-domain baseline switching withMAC learning, NDR through-put discovery.
• 10ge2p1x520-ethip4-ip4base-ndrdisc.robot => 2 ports of 10GEon Intel x520NIC, IPv4 baselinerouted forwarding, NDR throughput discovery.
• 10ge2p1x520-ethip6-ip6scale200k-ndrdisc.robot => 2 ports of 10GE on Intel x520 NIC, IPv6scaled up routed forwarding, NDR throughput discovery.
• 10ge2p1x520-ethip4-ip4base-iacldstbase-ndrdisc.robot => 2 ports of 10GE on Intel x520 NIC,IPv4 baseline routed forwarding, ingress Access Control Lists baselinematching on destination,NDR throughput discovery.
• 40ge2p1vic1385-ethip4-ip4base-ndrdisc.robot => 2 ports of 40GE on Cisco vic1385 NIC, IPv4baseline routed forwarding, NDR throughput discovery.
• eth2p-ethip4-ip4base-func.robot => 2 ports of Ethernet, IPv4 baseline routed forwarding, func-tional tests.

2. Physical port to VM (or VM chain) to physical port - a.k.a. NIC2VM2NIC, P2V2P,
NIC2VMchain2NIC, P2V2V2P

• PortNICConfig-WireEncapsulation-PacketForwardingFunction- PacketProcessingFunction1-. . . -
PacketProcessingFunctionN-VirtEncapsulation- VirtPortConfig-VMconfig-TestType

• 10ge2p1x520-dot1q-l2bdbasemaclrn-eth-2vhost-1vm-ndrdisc.robot => 2 ports of 10GE on Intelx520 NIC, dot1q tagged Ethernet, L2 bridge-domain switching to/from two vhost interfacesand one VM, NDR throughput discovery.
• 10ge2p1x520-ethip4vxlan-l2bdbasemaclrn-eth-2vhost-1vm-ndrdisc.robot => 2 ports of 10GEon Intel x520 NIC, IPv4 VXLAN Ethernet, L2 bridge-domain switching to/from two vhost in-terfaces and one VM, NDR throughput discovery.
• 10ge2p1x520-ethip4vxlan-l2bdbasemaclrn-eth-4vhost-2vm-ndrdisc.robot => 2 ports of 10GEon Intel x520 NIC, IPv4 VXLAN Ethernet, L2 bridge-domain switching to/from four vhost in-terfaces and two VMs, NDR throughput discovery.
• eth2p-ethip4vxlan-l2bdbasemaclrn-eth-2vhost-1vm-func.robot => 2 ports of Ethernet, IPv4VXLAN Ethernet, L2 bridge-domain switching to/from two vhost interfaces and one VM, func-tional tests.

3. API CRUD tests - Create (Write), Read (Retrieve), Update (Modify), Delete (Destroy) operations for
configuration and operational data

4.2. Test Naming 187

CSIT REPORT, Release rls19082

• ManagementTestKeyword-ManagementOperation-ManagedFunction1-. . . - ManagedFunctionN-
ManagementAPI1-ManagementAPIN-TestType

• mgmt-cfg-lisp-apivat-func => configuration of LISP with VAT API calls, functional tests.
• mgmt-cfg-l2bd-apihc-apivat-func => configuration of L2 Bridge-Domain with Honeycomb APIand VAT API calls, functional tests.
• mgmt-oper-int-apihcnc-func => reading status and operational data of interface with Honey-comb NetConf API calls, functional tests.
• mgmt-cfg-int-tap-apihcnc-func => configuration of tap interfaces with Honeycomb NetConfAPI calls, functional tests.
• mgmt-notif-int-subint-apihcnc-func => notifications of interface and sub-interface events withHoneycomb NetConf Notifications, functional tests.

For complete description of CSIT test naming convention please refer to CSIT test naming wiki page107.

4.3 Presentation and Analytics

4.3.1 Overview

The presentation and analytics layer (PAL) is the fourth layer of CSIT hierarchy. Themodel of presentationand analytics layer consists of four sub-layers, bottom up:
• sL1 - Data - input data to be processed:

– Static content - .rst text files, .svg static figures, and other files stored in the CSIT git repository.
– Data to process - .xml files generated by Jenkins jobs executing tests, stored as robot resultsfiles (output.xml).
– Specification - .yaml filewith themodels of report elements (tables, plots, layout, . . .) generatedby this tool. There is also the configuration of the tool and the specification of input data (jobsand builds).

• sL2 - Data processing
– The data are read from the specified input files (.xml) and stored as multi-indexed pan-das.Series108.
– This layer provides also interface to input data and filtering of the input data.

• sL3 - Data presentation - This layer generates the elements specified in the specification file:
– Tables: .csv files linked to static .rst files.
– Plots: .html files generated using plot.ly linked to static .rst files.

• sL4 - Report generation - Sphinx generates required formats and versions:
– formats: html, pdf
– versions: minimal, full (TODO: define the names and scope of versions)

107 https://wiki.fd.io/view/CSIT/csit-test-naming108 https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html

188 Chapter 4. CSIT Framework

https://wiki.fd.io/view/CSIT/csit-test-naming
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html

CSIT REPORT, Release rls19082

.YAML

Specification (CSIT gerrit)

Data

.RST

Static content (CSIT gerrit)

.ZIP (.XML)

Data to process (Jenkins)

pandas
Data model in JSON

Specification, Input data (Pandas.Series)

Data processing

Data presentation

Plots

plot.ly → .html

Files

.RST

Tables

Pandas → .csv

Report generation

Sphinx

.html / .pdf (then stored in nexus)

Jenkins plots

Jenkins plot
plugin

.html

sL1

sL2

sL3

sL4

Read files Read files Read files Read files

Read filesRead filesRead files

Read files Read files

Python calls Python calls Python calls

4.3.2 Data

Report Specification

The report specification file defines which data is used and which outputs are generated. It is humanreadable and structured. It is easy to add / remove / change items. The specification includes:
• Specification of the environment.
• Configuration of debug mode (optional).
• Specification of input data (jobs, builds, files, . . .).
• Specification of the output.
• What and how is generated: - What: plots, tables. - How: specification of all properties and param-eters.
• .yaml format.

Structure of the specification file

The specification file is organized as a list of dictionaries distinguished by the type:
-

type: "environment"
-

type: "configuration"
-

type: "debug"
-

type: "static"
-

type: "input"
-

(continues on next page)

4.3. Presentation and Analytics 189

CSIT REPORT, Release rls19082

(continued from previous page)
type: "output"

-
type: "table"

-
type: "plot"

-
type: "file"

Each type represents a section. The sections “environment”, “debug”, “static”, “input” and “output” arelisted only once in the specification; “table”, “file” and “plot” can be there multiple times.
Sections “debug”, “table”, “file” and “plot” are optional.
Table(s), files(s) and plot(s) are referred as “elements” in this text. It is possible to define and implementother elements if needed.
Section: Environment

This section has the following parts:
• type: “environment” - says that this is the section “environment”.
• configuration - configuration of the PAL.
• paths - paths used by the PAL.
• urls - urls pointing to the data sources.
• make-dirs - a list of the directories to be created by the PAL while preparing the environment.
• remove-dirs - a list of the directories to be removed while cleaning the environment.
• build-dirs - a list of the directories where the results are stored.

The structure of the section “Environment” is as follows (example):
-

type: "environment"
configuration:

Debug mode:
- Skip:
- Download of input data files
- Do:
- Read data from given zip / xml files
- Set the configuration as it is done in normal mode
If the section "type: debug" is missing, CFG[DEBUG] is set to 0.
CFG[DEBUG]: 0

paths:
Top level directories:
Working directory
DIR[WORKING]: "_tmp"
Build directories
DIR[BUILD,HTML]: "_build"
DIR[BUILD,LATEX]: "_build_latex"

Static .rst files
DIR[RST]: "../../../docs/report"

Working directories
Input data files (.zip, .xml)
DIR[WORKING,DATA]: "{DIR[WORKING]}/data"
Static source files from git

(continues on next page)

190 Chapter 4. CSIT Framework

CSIT REPORT, Release rls19082

(continued from previous page)
DIR[WORKING,SRC]: "{DIR[WORKING]}/src"
DIR[WORKING,SRC,STATIC]: "{DIR[WORKING,SRC]}/_static"

Static html content
DIR[STATIC]: "{DIR[BUILD,HTML]}/_static"
DIR[STATIC,VPP]: "{DIR[STATIC]}/vpp"
DIR[STATIC,DPDK]: "{DIR[STATIC]}/dpdk"
DIR[STATIC,ARCH]: "{DIR[STATIC]}/archive"

Detailed test results
DIR[DTR]: "{DIR[WORKING,SRC]}/detailed_test_results"
DIR[DTR,PERF,DPDK]: "{DIR[DTR]}/dpdk_performance_results"
DIR[DTR,PERF,VPP]: "{DIR[DTR]}/vpp_performance_results"
DIR[DTR,FUNC,VPP]: "{DIR[DTR]}/vpp_functional_results"
DIR[DTR,PERF,VPP,IMPRV]: "{DIR[WORKING,SRC]}/vpp_performance_tests/performance_improvements"

Detailed test configurations
DIR[DTC]: "{DIR[WORKING,SRC]}/test_configuration"
DIR[DTC,PERF,VPP]: "{DIR[DTC]}/vpp_performance_configuration"
DIR[DTC,FUNC,VPP]: "{DIR[DTC]}/vpp_functional_configuration"

Detailed tests operational data
DIR[DTO]: "{DIR[WORKING,SRC]}/test_operational_data"
DIR[DTO,PERF,VPP]: "{DIR[DTO]}/vpp_performance_operational_data"

.css patch file to fix tables generated by Sphinx
DIR[CSS_PATCH_FILE]: "{DIR[STATIC]}/theme_overrides.css"
DIR[CSS_PATCH_FILE2]: "{DIR[WORKING,SRC,STATIC]}/theme_overrides.css"

urls:
URL[JENKINS,CSIT]: "https://jenkins.fd.io/view/csit/job"
URL[JENKINS,HC]: "https://jenkins.fd.io/view/hc2vpp/job"

make-dirs:
List the directories which are created while preparing the environment.
All directories MUST be defined in "paths" section.
- "DIR[WORKING,DATA]"
- "DIR[STATIC,VPP]"
- "DIR[STATIC,DPDK]"
- "DIR[STATIC,ARCH]"
- "DIR[BUILD,LATEX]"
- "DIR[WORKING,SRC]"
- "DIR[WORKING,SRC,STATIC]"

remove-dirs:
List the directories which are deleted while cleaning the environment.
All directories MUST be defined in "paths" section.
#- "DIR[BUILD,HTML]"

build-dirs:
List the directories where the results (build) is stored.
All directories MUST be defined in "paths" section.
- "DIR[BUILD,HTML]"
- "DIR[BUILD,LATEX]"

It is possible to use defined items in the definition of other items, e.g.:
DIR[WORKING,DATA]: "{DIR[WORKING]}/data"

will be automatically changed to

4.3. Presentation and Analytics 191

CSIT REPORT, Release rls19082

DIR[WORKING,DATA]: "_tmp/data"

Section: Configuration

This section specifies the groups of parameters which are repeatedly used in the elements defined laterin the specification file. It has the following parts:
• data sets - Specification of data sets used later in element’s specifications to define the input data.
• plot layouts - Specification of plot layouts used later in plots’ specifications to define the plot layout.

The structure of the section “Configuration” is as follows (example):
-

type: "configuration"
data-sets:

plot-vpp-throughput-latency:
csit-vpp-perf-1710-all:
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20

vpp-perf-results:
csit-vpp-perf-1710-all:
- 20
- 23

plot-layouts:
plot-throughput:
xaxis:

autorange: True
autotick: False
fixedrange: False
gridcolor: "rgb(238, 238, 238)"
linecolor: "rgb(238, 238, 238)"
linewidth: 1
showgrid: True
showline: True
showticklabels: True
tickcolor: "rgb(238, 238, 238)"
tickmode: "linear"
title: "Indexed Test Cases"
zeroline: False

yaxis:
gridcolor: "rgb(238, 238, 238)'"
hoverformat: ".4s"
linecolor: "rgb(238, 238, 238)"
linewidth: 1
range: []
showgrid: True
showline: True
showticklabels: True
tickcolor: "rgb(238, 238, 238)"
title: "Packets Per Second [pps]"
zeroline: False

boxmode: "group"

(continues on next page)

192 Chapter 4. CSIT Framework

CSIT REPORT, Release rls19082

(continued from previous page)
boxgroupgap: 0.5
autosize: False
margin:

t: 50
b: 20
l: 50
r: 20

showlegend: True
legend:

orientation: "h"
width: 700
height: 1000

The definitions from this sections are used in the elements, e.g.:
-

type: "plot"
title: "VPP Performance 64B-1t1c-(eth|dot1q|dot1ad)-(l2xcbase|l2bdbasemaclrn)-ndrdisc"
algorithm: "plot_performance_box"
output-file-type: ".html"
output-file: "{DIR[STATIC,VPP]}/64B-1t1c-l2-sel1-ndrdisc"
data:

"plot-vpp-throughput-latency"
filter: "'64B' and ('BASE' or 'SCALE') and 'NDRDISC' and '1T1C' and ('L2BDMACSTAT' or 'L2BDMACLRN

→˓' or 'L2XCFWD') and not 'VHOST'"
parameters:
- "throughput"
- "parent"
traces:

hoverinfo: "x+y"
boxpoints: "outliers"
whiskerwidth: 0

layout:
title: "64B-1t1c-(eth|dot1q|dot1ad)-(l2xcbase|l2bdbasemaclrn)-ndrdisc"
layout:
"plot-throughput"

Section: Debug mode

This section is optional as it configures the debug mode. It is used if one does not want to download inputdata files and use local files instead.
If the debug mode is configured, the “input” section is ignored.
This section has the following parts:

• type: “debug” - says that this is the section “debug”.
• general:

– input-format - xml or zip.
– extract - if “zip” is defined as the input format, this file is extracted from the zip file, otherwisethis parameter is ignored.

• builds - list of builds from which the data is used. Must include a job name as a key and then a listof builds and their output files.
The structure of the section “Debug” is as follows (example):
-

type: "debug"

(continues on next page)

4.3. Presentation and Analytics 193

CSIT REPORT, Release rls19082

(continued from previous page)
general:

input-format: "zip" # zip or xml
extract: "robot-plugin/output.xml" # Only for zip

builds:
The files must be in the directory DIR[WORKING,DATA]
csit-dpdk-perf-1707-all:
-
build: 10
file: "csit-dpdk-perf-1707-all__10.xml"

-
build: 9
file: "csit-dpdk-perf-1707-all__9.xml"

csit-vpp-functional-1707-ubuntu1604-virl:
-

build: lastSuccessfulBuild
file: "csit-vpp-functional-1707-ubuntu1604-virl-lastSuccessfulBuild.xml"

hc2vpp-csit-integration-1707-ubuntu1604:
-

build: lastSuccessfulBuild
file: "hc2vpp-csit-integration-1707-ubuntu1604-lastSuccessfulBuild.xml"

csit-vpp-perf-1707-all:
-

build: 16
file: "csit-vpp-perf-1707-all__16__output.xml"

-
build: 17
file: "csit-vpp-perf-1707-all__17__output.xml"

Section: Static

This section defines the static content which is stored in git and will be used as a source to generate thereport.
This section has these parts:

• type: “static” - says that this section is the “static”.
• src-path - path to the static content.
• dst-path - destination path where the static content is copied and then processed.

-
type: "static"
src-path: "{DIR[RST]}"
dst-path: "{DIR[WORKING,SRC]}"

Section: Input

This section defines the data used to generate elements. It is mandatory if the debug mode is not used.
This section has the following parts:

• type: “input” - says that this section is the “input”.
• general - parameters common to all builds:

– file-name: file to be downloaded.
– file-format: format of the downloaded file, “.zip” or “.xml” are supported.

194 Chapter 4. CSIT Framework

CSIT REPORT, Release rls19082

– download-path: path to be added to url pointing to the file, e.g.:“{job}/{build}/robot/report/zip/{filename}”; {job}, {build} and {filename} are replaced byproper values defined in this section.
– extract: file to be extracted from downloaded zip file, e.g.: “output.xml”; if xml file is down-loaded, this parameter is ignored.

• builds - list of jobs (keys) and numbers of builds which output data will be downloaded.
The structure of the section “Input” is as follows (example from 17.07 report):
-

type: "input" # Ignored in debug mode
general:

file-name: "robot-plugin.zip"
file-format: ".zip"
download-path: "{job}/{build}/robot/report/*zip*/{filename}"
extract: "robot-plugin/output.xml"

builds:
csit-vpp-perf-1707-all:
- 9
- 10
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 21
- 22
csit-dpdk-perf-1707-all:
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
csit-vpp-functional-1707-ubuntu1604-virl:
- lastSuccessfulBuild
hc2vpp-csit-perf-master-ubuntu1604:
- 8
- 9
hc2vpp-csit-integration-1707-ubuntu1604:
- lastSuccessfulBuild

Section: Output

This section specifies which format(s) will be generated (html, pdf) and which versions will be generatedfor each format.
This section has the following parts:

• type: “output” - says that this section is the “output”.
• format: html or pdf.
• version: defined for each format separately.

The structure of the section “Output” is as follows (example):

4.3. Presentation and Analytics 195

CSIT REPORT, Release rls19082

-
type: "output"
format:

html:
- full
pdf:
- full
- minimal

TODO: define the names of versions
Content of “minimal” version

TODO: define the name and content of this version
Section: Table

This section defines a table to be generated. There can be 0 or more “table” sections.
This section has the following parts:

• type: “table” - says that this section defines a table.
• title: Title of the table.
• algorithm: Algorithm which is used to generate the table. The other parameters in this section mustprovide all information needed by the used algorithm.
• template: (optional) a .csv file used as a template while generating the table.
• output-file-ext: extension of the output file.
• output-file: file which the table will be written to.
• columns: specification of table columns:

– title: The title used in the table header.
– data: Specification of the data, it has two parts - command and arguments:

* command:
· template - take the data from template, arguments:
· number of column in the template.
· data - take the data from the input data, arguments:
· jobs and builds which data will be used.
· operation - performs an operation with the data already in the table, arguments:
· operation to be done, e.g.: mean, stdev, relative_change (compute the relative changebetween two columns) and display number of data samples ~= number of test jobs.The operations are implemented in the utils.py TODO: Move from utils,py to e.g. op-erations.py
· numbers of columns which data will be used (optional).

• data: Specify the jobs and builds which data is used to generate the table.
• filter: filter based on tags applied on the input data, if “template” is used, filtering is based on thetemplate.
• parameters: Only these parameters will be put to the output data structure.

The structure of the section “Table” is as follows (example of “table_performance_improvements”):

196 Chapter 4. CSIT Framework

CSIT REPORT, Release rls19082

-
type: "table"
title: "Performance improvements"
algorithm: "table_performance_improvements"
template: "{DIR[DTR,PERF,VPP,IMPRV]}/tmpl_performance_improvements.csv"
output-file-ext: ".csv"
output-file: "{DIR[DTR,PERF,VPP,IMPRV]}/performance_improvements"
columns:
-

title: "VPP Functionality"
data: "template 1"

-
title: "Test Name"
data: "template 2"

-
title: "VPP-16.09 mean [Mpps]"
data: "template 3"

-
title: "VPP-17.01 mean [Mpps]"
data: "template 4"

-
title: "VPP-17.04 mean [Mpps]"
data: "template 5"

-
title: "VPP-17.07 mean [Mpps]"
data: "data csit-vpp-perf-1707-all mean"

-
title: "VPP-17.07 stdev [Mpps]"
data: "data csit-vpp-perf-1707-all stdev"

-
title: "17.04 to 17.07 change [%]"
data: "operation relative_change 5 4"

data:
csit-vpp-perf-1707-all:
- 9
- 10
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 21

filter: "template"
parameters:
- "throughput"

Example of “table_details” which generates “Detailed Test Results - VPP Performance Results”:
-

type: "table"
title: "Detailed Test Results - VPP Performance Results"
algorithm: "table_details"
output-file-ext: ".csv"
output-file: "{DIR[WORKING]}/vpp_performance_results"
columns:
-

title: "Name"
data: "data test_name"

-
title: "Documentation"

(continues on next page)

4.3. Presentation and Analytics 197

CSIT REPORT, Release rls19082

(continued from previous page)
data: "data test_documentation"

-
title: "Status"
data: "data test_msg"

data:
csit-vpp-perf-1707-all:
- 17

filter: "all"
parameters:
- "parent"
- "doc"
- "msg"

Example of “table_details” which generates “Test configuration - VPP Performance Test Configs”:
-

type: "table"
title: "Test configuration - VPP Performance Test Configs"
algorithm: "table_details"
output-file-ext: ".csv"
output-file: "{DIR[WORKING]}/vpp_test_configuration"
columns:
-

title: "Name"
data: "data name"

-
title: "VPP API Test (VAT) Commands History - Commands Used Per Test Case"
data: "data show-run"

data:
csit-vpp-perf-1707-all:
- 17

filter: "all"
parameters:
- "parent"
- "name"
- "show-run"

Section: Plot

This section defines a plot to be generated. There can be 0 or more “plot” sections.
This section has these parts:

• type: “plot” - says that this section defines a plot.
• title: Plot title used in the logs. Title which is displayed is in the section “layout”.
• output-file-type: format of the output file.
• output-file: file which the plot will be written to.
• algorithm: Algorithm used to generate the plot. The other parameters in this section must provideall information needed by plot.ly to generate the plot. For example:

– traces
– layout
– These parameters are transparently passed to plot.ly.

• data: Specify the jobs and numbers of builds which data is used to generate the plot.
• filter: filter applied on the input data.

198 Chapter 4. CSIT Framework

CSIT REPORT, Release rls19082

• parameters: Only these parameters will be put to the output data structure.
The structure of the section “Plot” is as follows (example of a plot showing throughput in a chart box-with-whiskers):
-

type: "plot"
title: "VPP Performance 64B-1t1c-(eth|dot1q|dot1ad)-(l2xcbase|l2bdbasemaclrn)-ndrdisc"
algorithm: "plot_performance_box"
output-file-type: ".html"
output-file: "{DIR[STATIC,VPP]}/64B-1t1c-l2-sel1-ndrdisc"
data:

csit-vpp-perf-1707-all:
- 9
- 10
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 21

Keep this formatting, the filter is enclosed with " (quotation mark) and
each tag is enclosed with ' (apostrophe).
filter: "'64B' and 'BASE' and 'NDRDISC' and '1T1C' and ('L2BDMACSTAT' or 'L2BDMACLRN' or 'L2XCFWD

→˓') and not 'VHOST'"
parameters:
- "throughput"
- "parent"
traces:

hoverinfo: "x+y"
boxpoints: "outliers"
whiskerwidth: 0

layout:
title: "64B-1t1c-(eth|dot1q|dot1ad)-(l2xcbase|l2bdbasemaclrn)-ndrdisc"
xaxis:
autorange: True
autotick: False
fixedrange: False
gridcolor: "rgb(238, 238, 238)"
linecolor: "rgb(238, 238, 238)"
linewidth: 1
showgrid: True
showline: True
showticklabels: True
tickcolor: "rgb(238, 238, 238)"
tickmode: "linear"
title: "Indexed Test Cases"
zeroline: False

yaxis:
gridcolor: "rgb(238, 238, 238)'"
hoverformat: ".4s"
linecolor: "rgb(238, 238, 238)"
linewidth: 1
range: []
showgrid: True
showline: True
showticklabels: True
tickcolor: "rgb(238, 238, 238)"
title: "Packets Per Second [pps]"
zeroline: False

boxmode: "group"

(continues on next page)

4.3. Presentation and Analytics 199

CSIT REPORT, Release rls19082

(continued from previous page)
boxgroupgap: 0.5
autosize: False
margin:

t: 50
b: 20
l: 50
r: 20

showlegend: True
legend:

orientation: "h"
width: 700
height: 1000

The structure of the section “Plot” is as follows (example of a plot showing latency in a box chart):
-

type: "plot"
title: "VPP Latency 64B-1t1c-(eth|dot1q|dot1ad)-(l2xcbase|l2bdbasemaclrn)-ndrdisc"
algorithm: "plot_latency_box"
output-file-type: ".html"
output-file: "{DIR[STATIC,VPP]}/64B-1t1c-l2-sel1-ndrdisc-lat50"
data:

csit-vpp-perf-1707-all:
- 9
- 10
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 21

filter: "'64B' and 'BASE' and 'NDRDISC' and '1T1C' and ('L2BDMACSTAT' or 'L2BDMACLRN' or 'L2XCFWD
→˓') and not 'VHOST'"
parameters:
- "latency"
- "parent"
traces:

boxmean: False
layout:

title: "64B-1t1c-(eth|dot1q|dot1ad)-(l2xcbase|l2bdbasemaclrn)-ndrdisc"
xaxis:
autorange: True
autotick: False
fixedrange: False
gridcolor: "rgb(238, 238, 238)"
linecolor: "rgb(238, 238, 238)"
linewidth: 1
showgrid: True
showline: True
showticklabels: True
tickcolor: "rgb(238, 238, 238)"
tickmode: "linear"
title: "Indexed Test Cases"
zeroline: False

yaxis:
gridcolor: "rgb(238, 238, 238)'"
hoverformat: ""
linecolor: "rgb(238, 238, 238)"
linewidth: 1

(continues on next page)

200 Chapter 4. CSIT Framework

CSIT REPORT, Release rls19082

(continued from previous page)
range: []
showgrid: True
showline: True
showticklabels: True
tickcolor: "rgb(238, 238, 238)"
title: "Latency min/avg/max [uSec]"
zeroline: False

boxmode: "group"
boxgroupgap: 0.5
autosize: False
margin:

t: 50
b: 20
l: 50
r: 20

showlegend: True
legend:

orientation: "h"
width: 700
height: 1000

The structure of the section “Plot” is as follows (example of a plot showing VPP HTTP server performancein a box chart with pre-defined data “plot-vpp-httlp-server-performance” set and plot layout “plot-cps”):
-

type: "plot"
title: "VPP HTTP Server Performance"
algorithm: "plot_http_server_perf_box"
output-file-type: ".html"
output-file: "{DIR[STATIC,VPP]}/http-server-performance-cps"
data:

"plot-vpp-httlp-server-performance"
Keep this formatting, the filter is enclosed with " (quotation mark) and
each tag is enclosed with ' (apostrophe).
filter: "'HTTP' and 'TCP_CPS'"
parameters:
- "result"
- "name"
traces:

hoverinfo: "x+y"
boxpoints: "outliers"
whiskerwidth: 0

layout:
title: "VPP HTTP Server Performance"
layout:
"plot-cps"

Section: file

This section defines a file to be generated. There can be 0 or more “file” sections.
This section has the following parts:

• type: “file” - says that this section defines a file.
• title: Title of the table.
• algorithm: Algorithm which is used to generate the file. The other parameters in this section mustprovide all information needed by the used algorithm.
• output-file-ext: extension of the output file.

4.3. Presentation and Analytics 201

CSIT REPORT, Release rls19082

• output-file: file which the file will be written to.
• file-header: The header of the generated .rst file.
• dir-tables: The directory with the tables.
• data: Specify the jobs and builds which data is used to generate the table.
• filter: filter based on tags applied on the input data, if “all” is used, no filtering is done.
• parameters: Only these parameters will be put to the output data structure.
• chapters: the hierarchy of chapters in the generated file.
• start-level: the level of the the top-level chapter.

The structure of the section “file” is as follows (example):
-

type: "file"
title: "VPP Performance Results"
algorithm: "file_test_results"
output-file-ext: ".rst"
output-file: "{DIR[DTR,PERF,VPP]}/vpp_performance_results"
file-header: "\n.. |br| raw:: html\n\n
\n\n\n.. |prein| raw:: html\n\n <pre>\n\n\n..␣

→˓|preout| raw:: html\n\n </pre>\n\n"
dir-tables: "{DIR[DTR,PERF,VPP]}"
data:

csit-vpp-perf-1707-all:
- 22

filter: "all"
parameters:
- "name"
- "doc"
- "level"
data-start-level: 2 # 0, 1, 2, ...
chapters-start-level: 2 # 0, 1, 2, ...

Static content

• Manually created / edited files.
• .rst files, static .csv files, static pictures (.svg), . . .
• Stored in CSIT git repository.

No more details about the static content in this document.
Data to process

The PAL processes tests results and other information produced by Jenkins jobs. The data are now storedas robot results in Jenkins (TODO: store the data in nexus) either as .zip and / or .xml files.

4.3.3 Data processing

As the first step, the data are downloaded and stored locally (typically on a Jenkins slave). If .zip files areused, the given .xml files are extracted for further processing.
Parsing of the .xml files is performed by a class derived from “robot.api.ResultVisitor”, only necessarymethods are overridden. All and only necessary data is extracted from .xml file and stored in a structuredform.
The parsed data are stored as the multi-indexed pandas.Series data type. Its structure is as follows:

202 Chapter 4. CSIT Framework

CSIT REPORT, Release rls19082

<job name>
<build>

<metadata>
<suites>
<tests>

“job name”, “build”, “metadata”, “suites”, “tests” are indexes to access the data. For example:
data =

job 1 name:
build 1:

metadata: metadata
suites: suites
tests: tests

...
build N:

metadata: metadata
suites: suites
tests: tests

...
job M name:
build 1:

metadata: metadata
suites: suites
tests: tests

...
build N:

metadata: metadata
suites: suites
tests: tests

Using indexes data[“job 1 name”][“build 1”][“tests”] (e.g.: data[“csit-vpp-perf-1704-all”][“17”][“tests”]) weget a list of all tests with all tests data.
Data will not be accessible directly using indexes, but using getters and filters.
Structure of metadata:

"metadata": {
"version": "VPP version",
"job": "Jenkins job name"
"build": "Information about the build"

},

Structure of suites:

"suites": {
"Suite name 1": {

"doc": "Suite 1 documentation"
"parent": "Suite 1 parent"

}
"Suite name N": {

"doc": "Suite N documentation"
"parent": "Suite N parent"

}

Structure of tests:
Performance tests:
"tests": {

"ID": {

(continues on next page)

4.3. Presentation and Analytics 203

CSIT REPORT, Release rls19082

(continued from previous page)
"name": "Test name",
"parent": "Name of the parent of the test",
"doc": "Test documentation"
"msg": "Test message"
"tags": ["tag 1", "tag 2", "tag n"],
"type": "PDR" | "NDR",
"throughput": {

"value": int,
"unit": "pps" | "bps" | "percentage"

},
"latency": {

"direction1": {
"100": {

"min": int,
"avg": int,
"max": int

},
"50": { # Only for NDR

"min": int,
"avg": int,
"max": int

},
"10": { # Only for NDR

"min": int,
"avg": int,
"max": int

}
},
"direction2": {

"100": {
"min": int,
"avg": int,
"max": int

},
"50": { # Only for NDR

"min": int,
"avg": int,
"max": int

},
"10": { # Only for NDR

"min": int,
"avg": int,
"max": int

}
}

},
"lossTolerance": "lossTolerance" # Only for PDR
"vat-history": "DUT1 and DUT2 VAT History"
},
"show-run": "Show Run"

},
"ID" {

next test
}

Functional tests:
"tests": {

"ID": {
"name": "Test name",
"parent": "Name of the parent of the test",

(continues on next page)

204 Chapter 4. CSIT Framework

CSIT REPORT, Release rls19082

(continued from previous page)
"doc": "Test documentation"
"msg": "Test message"
"tags": ["tag 1", "tag 2", "tag n"],
"vat-history": "DUT1 and DUT2 VAT History"
"show-run": "Show Run"
"status": "PASS" | "FAIL"

},
"ID" {

next test
}

}

Note: ID is the lowercase full path to the test.
Data filtering

The first step when generating an element is getting the data needed to construct the element. The dataare filtered from the processed input data.
The data filtering is based on:

• job name(s).
• build number(s).
• tag(s).
• required data - only this data is included in the output.

WARNING: The filtering is based on tags, so be careful with tagging.
For example, the element which specification includes:
data:

csit-vpp-perf-1707-all:
- 9
- 10
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 21

filter:
- "'64B' and 'BASE' and 'NDRDISC' and '1T1C' and ('L2BDMACSTAT' or 'L2BDMACLRN' or 'L2XCFWD') and␣

→˓not 'VHOST'"

will be constructed using data from the job “csit-vpp-perf-1707-all”, for all listed builds and the tests withthe list of tags matching the filter conditions.
The output data structure for filtered test data is:
- job 1

- build 1
- test 1
- parameter 1
- parameter 2
...
- parameter n

...
- test n

(continues on next page)

4.3. Presentation and Analytics 205

CSIT REPORT, Release rls19082

(continued from previous page)
...

...
- build n

...
- job n

Data analytics

Data analytics part implements:
• methods to compute statistical data from the filtered input data.
• trending.

Throughput Speedup Analysis - Multi-Core with Multi-Threading

Throughput Speedup Analysis (TSA) calculates throughput speedup ratios for tested 1-, 2- and 4-coremulti-threaded VPP configurations using the following formula:
N_core_throughput

N_core_throughput_speedup = -----------------
1_core_throughput

Multi-core throughput speedup ratios are plotted in grouped bar graphs for throughput tests with64B/78B frame size, with number of cores on X-axis and speedup ratio on Y-axis.
For better comparison multiple test results’ data sets are plotted per each graph:

• graph type: grouped bars;
• graph X-axis: (testcase index, number of cores);
• graph Y-axis: speedup factor.

Subset of existing performance tests is covered by TSA graphs.
Model for TSA:

-
type: "plot"
title: "TSA: 64B-*-(eth|dot1q|dot1ad)-(l2xcbase|l2bdbasemaclrn)-ndrdisc"
algorithm: "plot_throughput_speedup_analysis"
output-file-type: ".html"
output-file: "{DIR[STATIC,VPP]}/10ge2p1x520-64B-l2-tsa-ndrdisc"
data:

"plot-throughput-speedup-analysis"
filter: "'NIC_Intel-X520-DA2' and '64B' and 'BASE' and 'NDRDISC' and ('L2BDMACSTAT' or 'L2BDMACLRN

→˓' or 'L2XCFWD') and not 'VHOST'"
parameters:
- "throughput"
- "parent"
- "tags"
layout:

title: "64B-*-(eth|dot1q|dot1ad)-(l2xcbase|l2bdbasemaclrn)-ndrdisc"
layout:
"plot-throughput-speedup-analysis"

206 Chapter 4. CSIT Framework

CSIT REPORT, Release rls19082

Comparison of results from two sets of the same test executions

This algorithm enables comparison of results coming from two sets of the same test executions. It is usedto quantify performance changes across all tests after test environment changes e.g. Operating Systemupgrades/patches, Hardware changes.
It is assumed that each set of test executions includes multiple runs of the same tests, 10 or more, toverify test results repeatibility and to yield statistically meaningful results data.
Comparison results are presented in a table with a specified number of the best and the worst relativechanges between the two sets. Following table columns are defined:

• name of the test;
• throughput mean values of the reference set;
• throughput standard deviation of the reference set;
• throughput mean values of the set to compare;
• throughput standard deviation of the set to compare;
• relative change of the mean values.

The model
The model specifies:

• type: “table” - means this section defines a table.
• title: Title of the table.
• algorithm: Algorithm which is used to generate the table. The other parameters in this section mustprovide all information needed by the used algorithm.
• output-file-ext: Extension of the output file.
• output-file: File which the table will be written to.
• reference - the builds which are used as the reference for comparison.
• compare - the builds which are compared to the reference.
• data: Specify the sources, jobs and builds, providing data for generating the table.
• filter: Filter based on tags applied on the input data, if “template” is used, filtering is based on thetemplate.
• parameters: Only these parameters will be put to the output data structure.
• nr-of-tests-shown: Number of the best and the worst tests presented in the table. Use 0 (zero) topresent all tests.

Example:

-
type: "table"
title: "Performance comparison"
algorithm: "table_perf_comparison"
output-file-ext: ".csv"
output-file: "{DIR[DTR,PERF,VPP,IMPRV]}/vpp_performance_comparison"
reference:

title: "csit-vpp-perf-1801-all - 1"
data:
csit-vpp-perf-1801-all:
- 1
- 2

compare:
title: "csit-vpp-perf-1801-all - 2"

(continues on next page)

4.3. Presentation and Analytics 207

CSIT REPORT, Release rls19082

(continued from previous page)
data:

csit-vpp-perf-1801-all:
- 1
- 2

data:
"vpp-perf-comparison"

filter: "all"
parameters:
- "name"
- "parent"
- "throughput"
nr-of-tests-shown: 20

Advanced data analytics

In the future advanced data analytics (ADA) will be added to analyze the telemetry data collected fromSUT telemetry sources and correlate it to performance test results.
TODO

• describe the concept of ADA.
• add specification.

4.3.4 Data presentation

Generates the plots and tables according to the report models per specification file. The elements aregenerated using algorithms and data specified in their models.
Tables

• tables are generated by algorithms implemented in PAL, the model includes the algorithm and allnecessary information.
• output format: csv
• generated tables are stored in specified directories and linked to .rst files.

Plots

• plot.ly109 is currently used to generate plots, the model includes the type of plot and all the neces-sary information to render it.
• output format: html.
• generated plots are stored in specified directories and linked to .rst files.

4.3.5 Report generation

Report is generated using Sphinx and Read_the_Docs template. PAL generates html and pdf formats. Itis possible to define the content of the report by specifying the version (TODO: define the names andcontent of versions).
109 https://plot.ly/

208 Chapter 4. CSIT Framework

https://plot.ly/

CSIT REPORT, Release rls19082

The process

1. Read the specification.
2. Read the input data.
3. Process the input data.
4. For element (plot, table, file) defined in specification:

a. Get the data needed to construct the element using a filter.
b. Generate the element.
c. Store the element.

5. Generate the report.
6. Store the report (Nexus).

The process is model driven. The elements’ models (tables, plots, files and report itself) are defined in thespecification file. Script reads the elements’ models from specification file and generates the elements.
It is easy to add elements to be generated in the report. If a new type of an element is required, only anew algorithm needs to be implemented and integrated.

4.3.6 Continuous Performance Measurements and Trending

Performance analysis and trending execution sequence:

CSIT PA runs performance analysis, change detection and trending using specified trend analysis metricsover the rolling window of last <N> sets of historical measurement data. PA is defined as follows:
1. PA job triggers:

1. By PT job at its completion.
2. Manually from Jenkins UI.

2. Download and parse archived historical data and the new data:
1. New data from latest PT job is evaluated against the rolling window of <N> sets of historicaldata.
2. Download RF output.xml files and compressed archived data.
3. Parse out the data filtering test cases listed in PA specification (part of CSIT PAL specificationfile).

3. Calculate trend metrics for the rolling window of <N> sets of historical data:
1. Calculate quartiles Q1, Q2, Q3.
2. Trim outliers using IQR.
3. Calculate TMA and TMSD.
4. Calculate normal trending range per test case based on TMA and TMSD.

4. Evaluate new test data against trend metrics:
1. If within the range of (TMA +/- 3*TMSD) => Result = Pass, Reason = Normal.
2. If below the range => Result = Fail, Reason = Regression.
3. If above the range => Result = Pass, Reason = Progression.

5. Generate and publish results
1. Relay evaluation result to job result.

4.3. Presentation and Analytics 209

CSIT REPORT, Release rls19082

2. Generate a new set of trend analysis summary graphs and drill-down graphs.
1. Summary graphs to include measured values with Normal, Progression and Regressionmarkers. MM shown in the background if possible.
2. Drill-down graphs to include MM, TMA and TMSD.

3. Publish trend analysis graphs in html format on https://docs.fd.io/csit/master/trending/.
Parameters to specify:

General section - parameters common to all plots:

• type: “cpta”;
• title: The title of this section;
• output-file-type: only “.html” is supported;
• output-file: path where the generated files will be stored.

Plots section:

• plot title;
• output file name;
• input data for plots;

– job to be monitored - the Jenkins job which results are used as input data for this test;
– builds used for trending plot(s) - specified by a list of build numbers or by a range of buildsdefined by the first and the last build number;

• tests to be displayed in the plot defined by a filter;
• list of parameters to extract from the data;
• plot layout

Example:

-
type: "cpta"
title: "Continuous Performance Trending and Analysis"
output-file-type: ".html"
output-file: "{DIR[STATIC,VPP]}/cpta"
plots:

- title: "VPP 1T1C L2 64B Packet Throughput - Trending"
output-file-name: "l2-1t1c-x520"
data: "plot-performance-trending-vpp"
filter: "'NIC_Intel-X520-DA2' and 'MRR' and '64B' and ('BASE' or 'SCALE') and '1T1C' and (

→˓'L2BDMACSTAT' or 'L2BDMACLRN' or 'L2XCFWD') and not 'VHOST' and not 'MEMIF'"
parameters:
- "result"
layout: "plot-cpta-vpp"

- title: "DPDK 4T4C IMIX MRR Trending"
output-file-name: "dpdk-imix-4t4c-xl710"
data: "plot-performance-trending-dpdk"
filter: "'NIC_Intel-XL710' and 'IMIX' and 'MRR' and '4T4C' and 'DPDK'"
parameters:
- "result"
layout: "plot-cpta-dpdk"

210 Chapter 4. CSIT Framework

https://docs.fd.io/csit/master/trending/

CSIT REPORT, Release rls19082

The Dashboard

Performance dashboard tables provide the latest VPP throughput trend, trend compliance and detectedanomalies, all on a per VPP test case basis. The Dashboard is generated as three tables for 1t1c, 2t2c and4t4c MRR tests.
At first, the .csv tables are generated (only the table for 1t1c is shown):
-

type: "table"
title: "Performance trending dashboard"
algorithm: "table_perf_trending_dash"
output-file-ext: ".csv"
output-file: "{DIR[STATIC,VPP]}/performance-trending-dashboard-1t1c"
data: "plot-performance-trending-all"
filter: "'MRR' and '1T1C'"
parameters:
- "name"
- "parent"
- "result"
ignore-list:
- "tests.vpp.perf.l2.10ge2p1x520-eth-l2bdscale1mmaclrn-mrr.tc01-64b-1t1c-eth-l2bdscale1mmaclrn-

→˓ndrdisc"
outlier-const: 1.5
window: 14
evaluated-window: 14
long-trend-window: 180

Then, html tables stored inside .rst files are generated:
-

type: "table"
title: "HTML performance trending dashboard 1t1c"
algorithm: "table_perf_trending_dash_html"
input-file: "{DIR[STATIC,VPP]}/performance-trending-dashboard-1t1c.csv"
output-file: "{DIR[STATIC,VPP]}/performance-trending-dashboard-1t1c.rst"

4.3.7 Root Cause Analysis

Root Cause Analysis (RCA) by analysing archived performance results – re-analyse available data for spec-ified:
• range of jobs builds,
• set of specific tests and
• PASS/FAIL criteria to detect performance change.

In addition, PAL generates trending plots to show performance over the specified time interval.
Root Cause Analysis - Option 1: Analysing Archived VPP Results

It can be used to speed-up the process, or when the existing data is sufficient. In this case, PAL usesexisting data saved in Nexus, searches for performance degradations and generates plots to show per-formance over the specified time interval for the selected tests.
Execution Sequence

1. Download and parse archived historical data and the new data.
2. Calculate trend metrics.

4.3. Presentation and Analytics 211

CSIT REPORT, Release rls19082

3. Find regression / progression.
4. Generate and publish results:

1. Summary graphs to include measured values with Progression and Regression markers.
2. List the DUT build(s) where the anomalies were detected.

CSIT PAL Specification

• What to test:
– first build (Good); specified by the Jenkins job name and the build number
– last build (Bad); specified by the Jenkins job name and the build number
– step (1..n).

• Data:
– tests of interest; list of tests (full name is used) which results are used

Example:

TODO

4.3.8 API

List of modules, classes, methods and functions

specification_parser.py

class Specification

Methods:
read_specification
set_input_state
set_input_file_name

Getters:
specification
environment
debug
is_debug
input
builds
output
tables
plots
files
static

input_data_parser.py

class InputData

Methods:
read_data
filter_data

Getters:

(continues on next page)

212 Chapter 4. CSIT Framework

CSIT REPORT, Release rls19082

(continued from previous page)
data
metadata
suites
tests

environment.py

Functions:
clean_environment

class Environment

Methods:
set_environment

Getters:
environment

input_data_files.py

Functions:
download_data_files
unzip_files

generator_tables.py

Functions:
generate_tables

Functions implementing algorithms to generate particular types of
tables (called by the function "generate_tables"):

table_details
table_performance_improvements

generator_plots.py

Functions:
generate_plots

Functions implementing algorithms to generate particular types of
plots (called by the function "generate_plots"):

plot_performance_box
plot_latency_box

generator_files.py

Functions:
generate_files

Functions implementing algorithms to generate particular types of
files (called by the function "generate_files"):

file_test_results

report.py

(continues on next page)

4.3. Presentation and Analytics 213

CSIT REPORT, Release rls19082

(continued from previous page)
Functions:

generate_report

Functions implementing algorithms to generate particular types of
report (called by the function "generate_report"):

generate_html_report
generate_pdf_report

Other functions called by the function "generate_report":
archive_input_data
archive_report

214 Chapter 4. CSIT Framework

CSIT REPORT, Release rls19082

PAL functional diagram

Specification
.YAML

Data to process
.xml

Static content
.rst

read_specification read_data

Specification Input data

filter_data filter_data

generate_files

Tables Plots

Files

generate_report

Report

generate_tables generate_plots

sL1 - Data

sL2 - Data
processing

sL3 - Data
presentation

sL4 - Report
generation

How to add an element

Element can be added by adding it’s model to the specification file. If the element is to be generated byan existing algorithm, only it’s parameters must be set.
If a brand new type of element needs to be added, also the algorithm must be implemented. Elementgeneration algorithms are implemented in the files with names starting with “generator” prefix. The nameof the function implementing the algorithm and the name of algorithm in the specification file have to bethe same.

4.3. Presentation and Analytics 215

CSIT REPORT, Release rls19082

4.4 CSIT RF Tags Descriptions

All CSIT test cases are labelled with Robot Framework tags used to allow for easy test case type identi-fication, test case grouping and selection for execution. Following sections list currently used CSIT TAGsand their documentation based on the content of tag documentation rst file110.

4.4.1 Testbed Topology Tags

2_NODE_DOUBLE_LINK_TOPO

2 nodes connected in a circular topology with two links interconnecting the devices.
2_NODE_SINGLE_LINK_TOPO

2 nodes connected in a circular topology with at least one link interconnecting devices.
3_NODE_DOUBLE_LINK_TOPO

3 nodes connected in a circular topology with two links interconnecting the devices.
3_NODE_SINGLE_LINK_TOPO

3 nodes connected in a circular topology with at least one link interconnecting devices.

4.4.2 Objective Tags

SKIP_PATCH

Test case(s) marked to not run in case of vpp-csit-verify (i.e. VPP patch) and csit-vpp-verify jobs (i.e. CSITpatch).
SKIP_VPP_PATCH

Test case(s) marked to not run in case of vpp-csit-verify (i.e. VPP patch).

4.4.3 Environment Tags

HW_ENV

DUTs and TGs are running on bare metal.
VM_ENV

DUTs and TGs are running in virtual environment.
VPP_VM_ENV

DUTs with VPP and capable of running Virtual Machine.
110 https://git.fd.io/csit/tree/docs/tag_documentation.rst?h=rls1908_2

216 Chapter 4. CSIT Framework

https://git.fd.io/csit/tree/docs/tag_documentation.rst?h=rls1908_2

CSIT REPORT, Release rls19082

4.4.4 NIC Model Tags

NIC_Intel-X520-DA2

Intel X520-DA2 NIC.
NIC_Intel-XL710

Intel XL710 NIC.
NIC_Intel-X710

Intel X710 NIC.
NIC_Intel-XXV710

Intel XXV710 NIC.
NIC_Cisco-VIC-1227

VIC-1227 by Cisco.
NIC_Cisco-VIC-1385

VIC-1385 by Cisco.

4.4.5 Scaling Tags

FIB_20K

2x10,000 entries in single fib table
FIB_200K

2x100,000 entries in single fib table
FIB_2M

2x1,000,000 entries in single fib table
L2BD_1

Test with 1 L2 bridge domain.
L2BD_10

Test with 10 L2 bridge domains.
L2BD_100

Test with 100 L2 bridge domains.

4.4. CSIT RF Tags Descriptions 217

CSIT REPORT, Release rls19082

L2BD_1K

Test with 1000 L2 bridge domains.
VLAN_1

Test with 1 VLAN sub-interface.
VLAN_10

Test with 10 VLAN sub-interfaces.
VLAN_100

Test with 100 VLAN sub-interfaces.
VLAN_1K

Test with 1000 VLAN sub-interfaces.
VXLAN_1

Test with 1 VXLAN tunnel.
VXLAN_10

Test with 10 VXLAN tunnels.
VXLAN_100

Test with 100 VXLAN tunnels.
VXLAN_1K

Test with 1000 VXLAN tunnels.
TNL_{t}

IPSec in tunnel mode - {t} tunnels.
SRC_USER_1

Traffic flow with 1 unique IP (users) in one direction.
SRC_USER_10

Traffic flow with 10 unique IPs (users) in one direction.
SRC_USER_100

Traffic flow with 100 unique IPs (users) in one direction.
SRC_USER_1000

Traffic flow with 1000 unique IPs (users) in one direction.

218 Chapter 4. CSIT Framework

CSIT REPORT, Release rls19082

SRC_USER_2000

Traffic flow with 2000 unique IPs (users) in one direction.
SRC_USER_4000

Traffic flow with 4000 unique IPs (users) in one direction.
100_FLOWS

Traffic stream with 100 unique flows (10 IPs/users x 10 UDP ports) in one direction.
10k_FLOWS

Traffic stream with 10 000 unique flows (10 IPs/users x 1000 UDP ports) in one direction.
100k_FLOWS

Traffic stream with 100 000 unique flows (100 IPs/users x 1000 UDP ports) in one direction.

4.4.6 Test Category Tags

FUNCTEST

All functional test cases.
PERFTEST

All performance test cases.

4.4.7 Performance Type Tags

NDRPDR

Single test finding both No Drop Rate and Partial Drop Rate simultaneously. The search is done by opti-mized algorithm which performs multiple trial runs at different durations and transmit rates. The resultscome from the final trials, which have duration of 30 seconds.
MRR

Performance tests where TG sends the traffic at maximum rate (line rate) and reports total sent/receivedpackets over trial duration. The result is an average of 10 trials of 1 second duration.
SOAK

Performance tests using PLRsearch to find the critical load.
RECONF

Performance tests aimed to measure lost packets (time) when performing reconfiguration while fullthroughput offered load is applied.

4.4. CSIT RF Tags Descriptions 219

CSIT REPORT, Release rls19082

4.4.8 Ethernet Frame Size Tags

These are describing the traffic offered by Traffic Generator, “primary” traffic in case of asymmetric load.For traffic between DUTs, or for “secondary” traffic, see ${overhead} value.
64B

64B frames used for test. Generic ethernet or IPv4.
78B

78B frames used for test. Ipv6.
114B

114B frames used for test. IPv4+vxlan.
118B

118B frames used for test. Dot1q+IPv4+vxlan.
IMIX

IMIX frame sequence (28x 64B, 16x 570B, 4x 1518B) used for test.
1460B

1460B frames used for test.
1480B

1480B frames used for test.
1514B

1514B frames used for test.
1518B

1518B frames used for test.
9000B

9000B frames used for test.

4.4.9 Test Type Tags

BASE

Baseline test cases, no encapsulation, no feature(s) configured in tests.
IP4BASE

IPv4 baseline test cases, no encapsulation, no feature(s) configured in tests.

220 Chapter 4. CSIT Framework

CSIT REPORT, Release rls19082

IP6BASE

IPv6 baseline test cases, no encapsulation, no feature(s) configured in tests.
L2XCBASE

L2XC baseline test cases, no encapsulation, no feature(s) configured in tests.
L2BDBASE

L2BD baseline test cases, no encapsulation, no feature(s) configured in tests.
L2PATCH

L2PATCH baseline test cases, no encapsulation, no feature(s) configured in tests.
SCALE

Scale test cases.
ENCAP

Test cases where encapsulation is used. Use also encapsulation tag(s).
FEATURE

At least one feature is configured in test cases. Use also feature tag(s).
TLDK

Functional test cases for TLDK.
DMM

Functional test cases for DMM.
TCP

Tests which use TCP.
TCP_CPS

Performance tests which measure connections per second using http requests.
TCP_RPS

Performance tests which measure requests per second using http requests.
HTTP

Tests which use HTTP.
NF_DENSITY

4.4. CSIT RF Tags Descriptions 221

CSIT REPORT, Release rls19082

Performance tests that measure throughput of multiple VNF and CNF service topologies at differentservice densities.

4.4.10 NF Service Density Tags

CHAIN

NF service density tests with VNF or CNF service chain topology(ies).
PIPE

NF service density tests with CNF service pipeline topology(ies).
NF_L3FWDIP4

NF service density tests with DPDK l3fwd IPv4 routing as NF workload.
NF_VPPIP4

NF service density tests with VPP IPv4 routing as NF workload.
{r}R{c}C

Service density matrix locator {r}R{c}C, {r}Row denoting number of service instances, {c}Column denotingnumber of NFs per service instance. {r}=(1,2,4,6,8,10), {c}=(1,2,4,6,8,10).
{n}VM{t}T

Service density {n}VM{t}T, {n}Number of NF Qemu VMs, {t}Number of threads per NF.
{n}DCRt}T

Service density {n}DCR{t}T, {n}Number of NF Docker containers, {t}Number of threads per NF.
{n}_ADDED_CHAINS

{n}Number of chains (or pipelines) added (and/or removed) during RECONF test.

4.4.11 Forwarding Mode Tags

L2BDMACSTAT

VPP L2 bridge-domain, L2 MAC static.
L2BDMACLRN

VPP L2 bridge-domain, L2 MAC learning.
L2XCFWD

VPP L2 point-to-point cross-connect.

222 Chapter 4. CSIT Framework

CSIT REPORT, Release rls19082

IP4FWD

VPP IPv4 routed forwarding.
IP6FWD

VPP IPv6 routed forwarding.

4.4.12 Underlay Tags

IP4UNRLAY

IPv4 underlay.
IP6UNRLAY

IPv6 underlay.
MPLSUNRLAY

MPLS underlay.

4.4.13 Overlay Tags

L2OVRLAY

L2 overlay.
IP4OVRLAY

IPv4 overlay (IPv4 payload).
IP6OVRLAY

IPv6 overlay (IPv6 payload).

4.4.14 Tagging Tags

DOT1Q

All test cases with dot1q.
DOT1AD

All test cases with dot1ad.

4.4.15 Encapsulation Tags

4.4. CSIT RF Tags Descriptions 223

CSIT REPORT, Release rls19082

ETH

All test cases with base Ethernet (no encapsulation).
LISP

All test cases with LISP.
LISPGPE

All test cases with LISP-GPE.
VXLAN

All test cases with Vxlan.
VXLANGPE

All test cases with VXLAN-GPE.
GRE

All test cases with GRE.
IPSEC

All test cases with IPSEC.
SRv6

All test cases with Segment routing over IPv6 dataplane.
SRv6_1SID

All SRv6 test cases with single SID.
SRv6_2SID_DECAP

All SRv6 test cases with two SIDs and with decapsulation.
SRv6_2SID_NODECAP

All SRv6 test cases with two SIDs and without decapsulation.

4.4.16 Interface Tags

PHY

All test cases which use physical interface(s).
VHOST

All test cases which uses VHOST.

224 Chapter 4. CSIT Framework

CSIT REPORT, Release rls19082

VHOST_256

All test cases which uses VHOST with qemu queue size set to 256.
VHOST_1024

All test cases which uses VHOST with qemu queue size set to 1024.
CFS_OPT

All test cases which uses VM with optimised scheduler policy.
TUNTAP

All test cases which uses TUN and TAP.
AFPKT

All test cases which uses AFPKT.
NETMAP

All test cases which uses Netmap.
MEMIF

All test cases which uses Memif.
SINGLE_MEMIF

All test caseswhich uses only singleMemif connection per DUT.OneDUT instance is running in containerhaving one physical interface exposed to container.
LBOND

All test cases which uses link bonding (BondEthernet interface).
LBOND_DPDK

All test cases which uses DPDK link bonding.
LBOND_VPP

All test cases which uses VPP link bonding.
LBOND_MODE_XOR

All test cases which uses link bonding with mode XOR.
LBOND_MODE_LACP

All test cases which uses link bonding with mode LACP.
LBOND_LB_L34

4.4. CSIT RF Tags Descriptions 225

CSIT REPORT, Release rls19082

All test cases which uses link bonding with load-balance mode l34.
LBOND_1L

All test cases which uses one link for link bonding.
LBOND_2L

All test cases which uses two links for link bonding.
DRV_AVF

All test cases which uses Intel Adaptive Virtual Function (AVF) device plugin for VPP. This plugins providesnative device support for Intel AVF. AVF is driver specification for current and future Intel Virtual Functiondevices. In essence, today this driver can be used only with Intel XL710 / X710 / XXV710 adapters.

4.4.17 Feature Tags

IACLDST

iACL destination.
COPWHLIST

COP whitelist.
NAT44

NAT44 configured and tested.
NAT64

NAT44 configured and tested.
ACL

ACL plugin configured and tested.
IACL

ACL plugin configured and tested on input path.
OACL

ACL plugin configured and tested on output path.
ACL_STATELESS

ACL plugin configured and tested in stateless mode (permit action).
ACL_STATEFUL

ACL plugin configured and tested in stateful mode (permit+reflect action).

226 Chapter 4. CSIT Framework

CSIT REPORT, Release rls19082

ACL1

ACL plugin configured and tested with 1 not-hitting ACE.
ACL10

ACL plugin configured and tested with 10 not-hitting ACEs.
ACL50

ACL plugin configured and tested with 50 not-hitting ACEs.
SRv6_PROXY

SRv6 endpoint to SR-unaware appliance via proxy.
SRv6_PROXY_STAT

SRv6 endpoint to SR-unaware appliance via static proxy.
SRv6_PROXY_DYN

SRv6 endpoint to SR-unaware appliance via dynamic proxy.
SRv6_PROXY_MASQ

SRv6 endpoint to SR-unaware appliance via masquerading proxy.

4.4.18 Encryption Tags

IPSECSW

Crypto in software.
IPSECHW

Crypto in hardware.
IPSECTRAN

IPSec in transport mode.
IPSECTUN

IPSec in tunnel mode.
IPSECINT

IPSec in interface mode.
AES

IPSec using AES algorithms.

4.4. CSIT RF Tags Descriptions 227

CSIT REPORT, Release rls19082

AES_128_CBC

IPSec using AES 128 CBC algorithms.
AES_128_GCM

IPSec using AES 128 GCM algorithms.
AES_256_GCM

IPSec using AES 256 GCM algorithms.
HMAC

IPSec using HMAC integrity algorithms.
HMAC_SHA_256

IPSec using HMAC SHA 256 integrity algorithms.
HMAC_SHA_512

IPSec using HMAC SHA 512 integrity algorithms.

4.4.19 Client-Workload Tags

VM

All test cases which use at least one virtual machine.
LXC

All test cases which use Linux container and LXC utils.
DRC

All test cases which use at least one Docker container.
DOCKER

All test cases which use Docker as container manager.
APP

All test cases with specific APP use.

4.4.20 Container Orchestration Tags

K8S

All test cases which use Kubernetes for orchestration.

228 Chapter 4. CSIT Framework

CSIT REPORT, Release rls19082

SFC_CONTROLLER

All test cases which use ligato/sfc_controller for driving configuration of vpp inside container.
VPP_AGENT

All test cases which use Golang implementation of a control/management plane for VPP
1VSWITCH

VPP running in Docker container acting as VSWITCH.
1VNF

1 VPP running in Docker container acting as VNF work load.
2VNF

2 VPP running in 2 Docker containers acting as VNF work load.
4VNF

4 VPP running in 4 Docker containers acting as VNF work load.

4.4.21 Multi-Threading Tags

STHREAD

Dynamic tag. All test cases using single poll mode thread.
MTHREAD

Dynamic tag. All test cases using more then one poll mode driver thread.
1NUMA

All test cases with packet processing on single socket.
2NUMA

All test cases with packet processing on two sockets.
1C

1 worker thread pinned to 1 dedicated physical core; or if HyperThreading is enabled, 2 worker threadseach pinned to a separate logical core within 1 dedicated physical core. Main thread pinned to core 1.
2C

2 worker threads pinned to 2 dedicated physical cores; or if HyperThreading is enabled, 4 worker threadseach pinned to a separate logical core within 2 dedicated physical cores. Main thread pinned to core 1.

4.4. CSIT RF Tags Descriptions 229

CSIT REPORT, Release rls19082

4C

4 worker threads pinned to 4 dedicated physical cores; or if HyperThreading is enabled, 8 worker threadseach pinned to a separate logical core within 4 dedicated physical cores. Main thread pinned to core 1.
1T1C

Dynamic tag. 1 worker thread pinned to 1 dedicated physical core. 1 receive queue per interface. Mainthread pinned to core 1.
2T2C

Dynamic tag. 2 worker threads pinned to 2 dedicated physical cores. 1 receive queue per interface. Mainthread pinned to core 1.
4T4C

Dynamic tag. 4 worker threads pinned to 4 dedicated physical cores. 2 receive queues per interface.Main thread pinned to core 1.
2T1C

Dynamic tag. 2 worker threads each pinned to a separate logical core within 1 dedicated physical core.1 receive queue per interface. Main thread pinned to core 1.
4T2C

Dynamic tag. 4 worker threads each pinned to a separate logical core within 2 dedicated physical cores.2 receive queues per interface. Main thread pinned to core 1.
8T4C

Dynamic tag. 8 worker threads each pinned to a separate logical core within 4 dedicated physical cores.4 receive queues per interface. Main thread pinned to core 1.

4.4.22 Honeycomb Tags

HC_FUNC

Honeycomb functional test cases.
HC_NSH

Honeycomb NSH test cases.
HC_PERSIST

Honeycomb persistence test cases.
HC_REST_ONLY

(Exclusion tag) Honeycomb test cases that cannot be run in Netconf mode using ODL client for Restfconf-> Netconf translation.

230 Chapter 4. CSIT Framework

BIBLIOGRAPHY

[lxc] Linux Containers77
[lxcnamespace] Resource management: Linux kernel Namespaces and cgroups78.
[stgraber] LXC 1.0: Blog post series79.
[lxcsecurity] Linux Containers Security80.
[capabilities] Linux manual - capabilities - overview of Linux capabilities81.
[cgroup1] Linux kernel documentation: cgroups82.
[cgroup2] Linux kernel documentation: Control Group v283.
[selinux] SELinux Project Wiki84.
[lxcsecfeatures] LXC 1.0: Security features85.
[lxcsource] Linux Containers source86.
[apparmor] Ubuntu AppArmor87.
[seccomp] SECure COMPuting with filters88.
[docker] Docker89.
[k8sdoc] Kubernetes documentation90.
[TWSLink] TWS94
[dockerhub] Docker hub95
[fdiocsitgerrit] FD.io/CSIT gerrit96
[fdioregistry] FD.io registy
[JenkinsSlaveDcrFile] jenkins-slave-dcr-file97

77 https://linuxcontainers.org/78 https://www.cs.ucsb.edu/~rich/class/cs293b-cloud/papers/lxc-namespace.pdf79 https://stgraber.org/2013/12/20/lxc-1-0-blog-post-series/80 https://linuxcontainers.org/lxc/security/81 http://man7.org/linux/man-pages/man7/capabilities.7.html82 https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt83 https://www.kernel.org/doc/Documentation/cgroup-v2.txt84 http://selinuxproject.org/page/Main_Page85 https://stgraber.org/2014/01/01/lxc-1-0-security-features/86 https://github.com/lxc/lxc87 https://wiki.ubuntu.com/AppArmor88 https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt89 https://www.docker.com/what-docker90 https://kubernetes.io/docs/home/94 https://wiki.fd.io/view/CSIT/TWS95 https://hub.docker.com/96 https://gerrit.fd.io/r/CSIT97 https://github.com/snergfdio/multivppcache/blob/master/ubuntu18/Dockerfile

231

https://linuxcontainers.org/
https://www.cs.ucsb.edu/~rich/class/cs293b-cloud/papers/lxc-namespace.pdf
https://stgraber.org/2013/12/20/lxc-1-0-blog-post-series/
https://linuxcontainers.org/lxc/security/
http://man7.org/linux/man-pages/man7/capabilities.7.html
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroup-v2.txt
http://selinuxproject.org/page/Main_Page
https://stgraber.org/2014/01/01/lxc-1-0-security-features/
https://github.com/lxc/lxc
https://wiki.ubuntu.com/AppArmor
https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt
https://www.docker.com/what-docker
https://kubernetes.io/docs/home/
https://wiki.fd.io/view/CSIT/TWS
https://hub.docker.com/
https://gerrit.fd.io/r/CSIT
registry.fdiopoc.net
https://github.com/snergfdio/multivppcache/blob/master/ubuntu18/Dockerfile

CSIT REPORT, Release rls19082

[CsitShimDcrFile] csit-shim-dcr-file98
[CsitSutDcrFile] csit-sut-dcr-file99
[ansiblelink] ansible100
[fdiocsitansible] Fd.io/CSIT ansible101
[inteli40e] Intel i40e102
[pciids] pci ids103

98 https://github.com/snergfdio/multivppcache/blob/master/csit-shim/Dockerfile99 https://github.com/snergfdio/multivppcache/blob/master/csit-sut/Dockerfile100 https://www.ansible.com/101 https://git.fd.io/csit/tree/resources/tools/testbed-setup/ansible102 https://downloadmirror.intel.com/26370/eng/readme.txt103 http://pci-ids.ucw.cz/v2.2/pci.ids

232 Bibliography

https://github.com/snergfdio/multivppcache/blob/master/csit-shim/Dockerfile
https://github.com/snergfdio/multivppcache/blob/master/csit-sut/Dockerfile
https://www.ansible.com/
https://git.fd.io/csit/tree/resources/tools/testbed-setup/ansible
https://downloadmirror.intel.com/26370/eng/readme.txt
http://pci-ids.ucw.cz/v2.2/pci.ids

	Introduction
	Report History
	Report Structure
	Test Scenarios
	Physical Testbeds
	Test Methodology

	VPP Performance
	Overview
	Release Notes
	Packet Throughput
	Comparisons
	Throughput Trending
	Test Environment
	Documentation

	VPP Device
	Overview
	Release Notes
	Integration Tests
	Documentation

	CSIT Framework
	Design
	Test Naming
	Presentation and Analytics
	CSIT RF Tags Descriptions

	Bibliography

